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Nomenclature
A, Area of the cable in unstretched condition
Coe Tangential drag coefficient
Cop Normal drag coeflicient
C; Modal generalized displacement
D, Diameter of the cable in unstretched condition
D, Waterdepth
E Young's modulus
F Force per unit length
H Horizontal Tension
H. Horizonta! Tension projected on the chord (H/cosé, )
[His,r)] Matrix influence function
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M Mass plus the added mass per unit unstretched length
Q Quantity governing slow dynamices
Qlo)=-h(¢], - M«"L?/(EA)
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T, Effective tension
T, Effective static tension

Effective dynamic tension

3



U Current velocity

S Impedance transfer function

b Sag of the cable

b, Damping coustant 0.5 p C,D
b Bi-normal vector
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el

°y Transverse wavespeed projected on the horizontal direction
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stretched Lagrangian coordinate along the cable]
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(W L/H.)
Projected elastic strain (H./{EA))

Small perturbation quantity
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Introduction

This is the final report of s research effort conducted at the Ocean
Engineering Department at M.LT., supported jointly by the Sea Grant Program,

NAVSEA and a consortium of offshore companies consisting of

Conoco Inc.

Exxon Production Research Company

Gulf Qil Exploration and Production Company
Norsk-Hydro

Mobil Research and Development Corporation

Shell Development Company

The purpose of the research was to study the dynamics of a single mooring line
under conditions expected in a marine application. The discovery of some basic
linear dynamic properties of cables was the principal reason for this study, which
investigated the effect of the principal non-linearities on linear predictions. The
equivalent linearization of nonlinear terms was also addressed as a means for

reducing the computational complexity for assessing cable dynamic properties,

The interest in this project stems from the fact that deep water applications
for mooring systems have been proposed for implementation in the near {uture, or

have already been made {up to more than 2000 ft) ip some instances.

The principal difference in deep water applications from previous mooring
installations is that the natural frequencies of the lines lie within the wave spectrum

and dynamic amplification is expected. At the same time an increase in pretension



-14
is required due to the increased self-weight of the line as the line length increases,

this reducing the available margin for dynamic effects.

The principal non-linearity for vibrating cables in water is the fluid drag, with
the exception of vortex-induced oscillations. This was confirmed in this study,
although other parameters enter such as the elastic stiffness-to-catenary stiffness
ratio, which affect the dynamic performance also. An outline of the numerjcal

results found for specific applications illustrates the effects of the principal

parameters (see part II).

The effect and linearization of the cable bottom interaction is a novel issue for
cable dynamic studies, although most lines used for mooring offshore structures
exhibit such an interaction. This study addressed the problem with the purpose of
gaining insight into the principal mechanism of interaction and a linearization
procedure has been derived. A method to couple the dynamics of several mooring

lines was also developed, based on the principle of dynamic impedance.

The problem of snap loading for a taut horizontal cable was addressed. Such
a development for a8 curved cable is novel, because it accounts for all the properties
recently discovered for cable dynamics. Traveling stress waves can be properly
simulated with the new method. The numerical applications can be found in part II

of the report.

The authors wish to acknowledge the support of the office of Sea Grant,
NAVSEA and of the participating companies named in the beginning of the
istroduction. They are also indebted to the representatives of NAVSEA and the
offshore companies who discussed the progress of the report, offered suggestions and
shared their experience and information that was available to them: Mr.

G. Prentice of NAVSEA; Drs. Pejaver and W.C.Kan of Exxon; Messrs. P.Erb,

R.Vermeir and P.Wybro of Conoco; Dr. C.G.Caracostis of Shell Development
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Company; Mr. P.O.Verlo of Norsk Hydro; Mr. T.Torsey of Mobil Research and
Development Corporation; and Mr. C.Barton of Gulf Oil Exploration and

Production Company.
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Chapter 1

THREE DIMENSIONAL EQUATIONS
OF CABLE DYNAMICS

1.1 Introduction

Three dimensional cable dynamics can be studied in several coordinate
systems. Critescu used a Cartesian coordinate system to study the motions of
extensible cables [Critescu 67]. The fundamental dynamic properties of cables
are better analysed in the so called natural coordinates of a cable, which are
fixed on the cable. The cable coordinate system is, therefore, varying both in
time and space. Another advantage of this system is that the fluid forces can
be described easily. In chapter 3, we will show that this description leads to

analyvtical solutions of the linearised cable dynamic equations.

A derivation of the three dimensional equations in natural coordinates has
been done by Lenskii {Lenskii 78]. Cannon and Genin [Cannon 72a} derive the
equations directly in terms of the velocities and angular rotations. Barr [Barr
74] obtained equations of motion in two dimensions, starting from 2 more
general formulation, which includes bending effects. A study on the treatment
of the hydrodynamic forces on cables can be found in [Breslin 74

and [Goodman 76).
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1.2 Kinematics in Three Dimensions

We consider the cable idealized as a single curvilinear line. We define 3
certain material point on the cable as the origin and a certain direction as
positive along the cable. For example, we will usually fix the origin at the
lower end of a marine cable and the positive direction will be from the lower

towards the upper cable end.

The cable is made of an elastic material, so it is extensible. As a result.
the distance between two material points will vary depending on the state of
stretching. Let s denote the unstretched distance of a material point from the
origin and p(s,t) the stretched distance of the same point at a certain time, t.

Both s and p are Langrangian coordinates of the material point.

The cable configuration, ie. the shape of the idealized line is a
continuous function of time and of the coordinates s (or p). Each material
point can be described by its distance from the origin of a cartesian system
(x. ¥, 2}, ie.

x(s,t)

¥{s.t}

z(s,t)

In order to account properly for the fluid forces, though, we will employ
a different description system, which introduces a certaln degree of complexity,

so it is worthwhile establishing a few basijc properties, which we can recall

systematically in subsequent sections.

— [

The system t, p, b : We define a tangential unit vector ?, at a certain
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point A of the cable configuration. The vector AC, where C is another point
on the cable, has a limiting position as C tends towards A, which is the
tangent direction (provided the cable configuration does not form an angle at
the point A, in which case there are two tangents, one from the left and ocne

from the right).

Next we define a normal unit vector o at point A: We pick a point B
to the left of A and a point C to the right of A (both B and C lie on the
cable configuration). We form two planes, one perpendicular to AC and
passing through the middle point of AC, and a similar plane for AB. The two
planes cross along a line whose shortest distance from A is AM. The limit
position of AM, as B and C tend to A, define the notmal direction (see {igure
1-1), which is perpendicular to the tangential direction. The limit distance AN

denoted by p is called the radius of curvature.

Finally, we define the binormal unit vector b such that the system of

o

vectors (t, n, b) is orthogonal and right-handed.

Since the configuration changes both with time and along the cable

length, all three vectors are functions of t and p (or s), ie:

t (t,p)

n (t,p}

b {t.p)

Strain e. A segment of the cable with unstretched length & has at a
certain time length §p. We define the longitudinal strain e as:

op-ds dp

lim
e = g —_— = — a1 (1.1}
%—0 ( &s ) ds
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Figure 1-1:

Definition of the Natural Coordinate System
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As a result of stretching, the cross sectional area of the cable changes

also, something that will be discussed later.

Changes in space: The position of t varies along p according to the

Frenet
at
op
ob
dp
on

dp

relations, {Hildebrand 49]:

1
= — 0
P

1~
= --n (1.2)

1 1
=-b--t
TP

where p is the radius of curvature and r the radius of torsion. The

notation

8t
ap

indicates the vector which is obtained by subtracting the unit vector

?[t,p) from the unit vector t {t,p+dp), divided by dp, as dp — 0.

We rewrite the above relations in terms of the unstretched coordinate s,

using the relation dp = (l+e)ds:

ot
Js
ob

s

o
Bs

1+e

= — 1

P

I
]
=

{1.3)
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We redefine p, 85 gf{1+e), and 7, as 7f{1+e}. These are the curvature
and the torsion in the unstretched coordinate s. The subseript s will be

omitted in the sequel, while p and r wil denote the unstretched quantities.

Next we define the Darboux vector (1

Q=-t+-b =(0, 0, ;) (1.4)
r P
I
N, =-
;
1, =10
1
Q, = -
P

which is a mathematical fabrication to [facilitate operations involving
spatial derivatives in the (t, n, b) system. Let F (t,s) denote a vector which

varies along the length of the cable and let its coordinates be Fl. F2, F‘a, le.

F=F¢( +Fp +F} (1.5)

Then the derivative of F in the [?, ;, -ﬁ) system denoted as
DF . -
[ E ] {t,a.b}
becomes quite complex because in addition to the change of Fl, F2, F3
we must account for the rotation of the system (?, _n., E) along the cable
length. To simplify the notation, we denote:
DF. DF
[Bﬂ qT. 5, _I;] = Ds (1.6)

We will then prove that



DF d - -
— = — + Q XF {1.7)
Ds ds

where

9F . oF OF, oF,

g_ Js ’35 ’E:

Proof:
DF 4F o on ab
Ds ds Js “ Bs ds

Using the Frenet relations (1.2) we find that

DF oF -F, .1 1 - F,
—=—-t 2 . nf[-F--F |]+b-=
Ds Js i T p T
F - =
= —+0OXF

Changes in time. For the same reason that changes in space become

complicated in the (t, n, b} system, changes in time must also be

reformulated. We simply denote:

DF, __ _  DF
[a (t. 2. b))

The equivalent of the Darboux vector is now the rotation vector of the

classical dynamics:

—

w o= b}l? + w2; + ""3b
and we obtain from dynamics that [Crandall 56]:
DF oF . .

_— = — 4+ wXF
Dt ot

{1.8)



where
8F  OF, &F, oF,
6 Lot o Bt

1.3 Cable Dynamics

We define a velocity of a point on a the cable as:

—

V= vt + v, + vgb (1.9)

Newton's law can be written for an element with unstretched length ds

and stretched length dp as:

Dv n_ o,
m, —ds = Y F.dp (1.10)
Dt j=0

where m_ is the mass per unit length in the instretched coordinate and F

the force per unit length on the cable.

Dv &,
m, — = ZO F(l+e) (1.11)
1=

The equation is rewritten using (1.8):
m, [— + wx;] =Y F{l+e) (1.12)
at i=0

explicitly this is written as;



-04-

v, n

m. |(— - v,w ol —

0 ot 2¥3 + VSUJQ- = ‘._.Zo Fu(1+e)

.3V2 ] n

M, | == V39 + vl = 3 Fo(i+e)
3t | = &
,BVE ] n

M (=77 Vv F Vauyl = 3 Fl+e)
- i =0

Equation (1.12) is the equation of motion for a cable expressed in the

natural coordinate system.

1.4 Compatibility Relations

Compatibility relations can be formulated directly in terms of
displacements, or they can be formulated in terms of velocities. The two
formulations are completely equivalent, and both can be used to solve the
problem.

We will derive the compatibility relations using displacements. Anbp
alternative derivation to find the compatibility relations in terms of velocities
can be found in appendix A.

We define ? as the vector from the origin of a fixed coordinate system ta
a point on the cable. A reference state is defined as the position of the cakhle
at some arbitrary, fixed time ¢t . The vector to the same material point at

that time is denoted by T . (see figure 1-2)
Expressing the spatial changes using the Darboux vector of the reference

state, we find:



dynomic position

—
/ reference slate

X

Figure 1-2: Derivation of the Compatibility Relations
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Dir - r} 6[r-r0}_ﬁ_’_~ _- -
D T o (amgdy) T X
- . e {1.13)
Dr  Dr, or -} __ -
B T e e XU
According to the definition of the tangential vector [Hildebrand 49):
t{t,p) bt )
t tlp = (t!p
Dp
1 Dr
= — (1.14)
(1+e) Ds
Therefore, we obtain:
- —_ a(—; - _r:)) . e - e — —
(1+e]t - (1+80)t0 = 6 (‘O-EQ-bol -+ QOX(r - 1'0) {115)

(1.15) is the compatibility relations in terms of displacements. To obtain

the compatibility relations in terms of velocities, (1.15) is rewritten as:

o — D{_]: - ;.0)
(1+e)t - (14e )b, = ——— (1.16)
Ds
Taking the time derivative :
D Dv
— {(H-e]z] == ——
Dt Ds
D_‘: de _, — — .
— = — t + (1+e)(wXt] (1.17)
Ds at .

These are the compatibility relations in terms of velocities. In this case.

no reference system is involved. Explicity this can be written as:



v, de

_ - v“ns _— e

s “ at

dv,

g + VIQ3 - Vanl= (1+E)w3
3\’3

g + v2ﬂl = - [1+e)u2

1.5 Relation between the Rotation and the Darboux Vectors

The rotation and the Darboux vectors are related.

follows. Equality of the mixed derivatives can be expressed as:

D Dv. D .Dv
Dt [Ds] T Ds [Dt]

When expressing (1.19) in terms of the Darboux vector and the rotation

e

(1.18)

This can be shown as

(1.19)

vectors, using the formulas for triple vector products, the following equality is

obained:
3 6w -
— = — 4+ %W
at Os

or explicity
BQl Bu]
—_— = .. Qa“‘""
at s -

6w2

0 = —=. Qlws -+ Q3ul
a0 ow
3.3

(1.20)



1.8 Forces Acting on the Cable

The forces acting on the cable are {a)} the tension, (b} its weight, (c)
external forces. The external forces include fluid related forces such as

hydrostatic forces, drag forces and inertia forces.

1.6.1 Weight and Buoyancy forces

As shown in figure 1-3 the segment is in contact with the fluid only at
its sides, so that the hydrostatic force is always perpendicular to the cable
configuration {i.e., in the ?, ; plane). It is very convenient to add and
subtract the "missing” hydrostatic forces from a cable element (as shown in
figure 1-3). Then, by lumping together all the hydrostatic forces pointing
towards the interior of the cable element, we obtain Archimede’s force in the
vertical direction.

B=yp, A -dp

where A is the (stretched} cable sectional area, while we lump together

the temsion T (pointing always in the tangential direction towards the exterior
of the cable element) and the hydrostatic force acting in the same direction, to
create the effective tension T,.

T =T+p-A

e
The introduction of the effective tension causes the equations in water to
have the same form as the equations in air, except that the weight must be

replaced by the net weight and the tension by the effective tension.

If m_ denotes the unstretched mass of the cable per unit length, and m

the corresponding stretched quantity, then conservation of mass imphes:
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m - ds = m-dp

Since we managed to artificially create a buoyancy force by introducing
the effective tension, we can now use the net weight of the cable per unit

(stretched) length in water,
m-g-p, E A
We assume for simplicity, following Breslin [Breslin 74] that the volume
per unit length of the cable remains unchanged (which implies that Poisson’s
ratio v is equal to 1/2) to obtain the net weight per unstretched unit length
In water w_ as
w, =g - (m-p, - A)

where A is the unstretched cable sectional area. The corresponding

quantity per stretched unit length. w_, is related to w_ by the relation (based

on v = 1/2):
w, - ds = w, dp
Therefore
?W dp = - w_ K - ds

-
where k is the unit vector in positive direction in a fixed reference

system.

1.6.2 Fluid Hydrodynamic Forces

In addition to the hydrostatic force, the cable is subject to a fluid force.
which includes a fluid inertia component ( related to the added mass ma) and
a viscosity related component (drag force}. If a Morison type of loading 1s

used, then the fluid forces are decomposed simply in an added mass force and
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a velocity drag force.
The subject of the added mass for cables has attracted some attention in
the literature, especially when a current is present. Lighthill [Lighthill 60]
showed that for the transverse oscillations of a horizontal slender body whose
longitudinal axis is parallel to the current, the added mass force can be

approximated ss:
D DW
Rt kel
where W is the vertical displacement, m, the added mass per unit length
of an infinite cylinder with the same cross section as the local section of the
body, and D/DT denotes the substantial derivative, ie. if U is the current
speed:

a é d 0
FA=-(5—U-EX—){ma(x)-(a—t-U-a)-W(x,t)} (1.21)
The direction of F, is vertical. Lighthill showed that this approximation

is good, provided the wave length to diameter ratio is larger than 5, and the
amplitude of oscillation is small. An extension to a curved inclined
configuration must account for possible interactions among the various cable
sections and, primarily, for separation effects. Breslin [Breslin 74] used
potential theory to derive an expression for the added mass force for a cable,

but his final expression, obtained by a strip theory approach is in error and

does mot reduce to Lighthill’s expression. What is actually missing is a double

material derivative as shown in (1.21). Breslin’s expression contains a material

and a regular derivative. In Lenskii [Lenskii 78] an expression to include

stretching effects was derived.

It is the author's opinion that separation effects are predominant. As
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shown in Allen and Perkins [Allen 51] any inclination above 3% - 5° causes
expression (1.21) to fail. It is well known also that vortex shedding has a
profound elfect on added mass, so that any corrections for current or
stretching effects within the frame of the investigators above may not be
necessary. Until conclusive experiments are conducted therefore, and with the
exception of cables towed along their axis, it is suggested in the present study
to use an added mass force per unit length in the direction normal to the

cable.
dp = -m_ — - ds (1.22

where m, the two-dimensional mass per unit length of an infinite cylinder

with the same cross section as the cable, and under identical flow conditions.
and :n the normal velocity between the cylinder and the fluid particles. The
value of m_ of course is difficult to find and only partial information is

available as in Ramberg and Griffin |[Ramberg 77].

To obtain the drag force, we use the separation principle. The drag
force on an inchned cylinder is separated into a normal drag component,
proportional to the square of the normal relative velocity and a tangential
frictional drag component, proportional to the square of the tangential relative
velocity. This force can be easily decomposed into a normal, tangential and

binormal drag components [Breslin 74].
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2
Ven

Py CDn (Re) D0 Vou

D | = kT | e

2
- ¥rb

Pw CDb (Re] Do ¥ib

where: Do : the diameter of the cable
v,y : the component of the relative velocity

¥

vu, m'

Unsteady fluid forces,

such as due to waves,

1 —
.-, CD!. (Re) D[J Vi [v“| t (1+e/2) ds
2

1
+ vfb]g P (1+e/2)ds (1.23)

ro

1
+ v }E b {14e/2})ds

vortex shedding and

galloping are not considered in the present work.

1.6.3 Tension Force

The force on an element with unstretched length can be written as:

d . T, - _ dv
— (T, ) ds = -——-t,+T—-]ds
ds ds € ds
IT,~ T, -~
= -—-5t+—°n]ds
ds P

1.7 Equation of Motion

Using {1.22), (1.23) and (1.24), the

rewritten as:

(1.24)

equation of motion (1.10) can be
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oy . 6Te - Te —

mo[—+w><:']=—-t+—-n
at ds P

—l: a\'n — ov —
-wk-(m, —n1n-+m
o an 3t

+ (Ft + Fo + F.b) .
s

(1.23)

The above equation is the complete equation of motion expressed in its

natural coordinate system.

1.8 Governing Equations

The complete set of governing equations is obtained by combining (1.17).

{(1.20) and (1.25).

N AT
m |— +wXy| 2= — 1t + n
° lat q s e3
v av, —
- n b
-w"k-m“aTn-mabgt_b
+ (Ft + F, n + F bj{l+e)
6;" —- - de _, - —
— 4+ OXv = — t + (l+ejwXt
ds at
80 B - -
—_— = — 4 {IXw
ot s

This has to be supplemented with a tension-strain relation.

{1.26}
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de ) .
T =fle, —,s 27
¢ at
The above is a set of 10 equations with 10 variables: v, vy, v4 w), w,,
wy, 12y, g, T, e. Given appropriate boundary conditions, a solution can be

obtained. In the sequel, we will refer to m  (the mass per unit unstretched

length) as m, dropping the subscript o for convenience.

1.9 Euler Angles

The governing equations are best expressed in terms of Euler angles. Let
¢, 8, ¢ be the Euler angles defining the position of the t, n, b system relative

to the (x,y,z) system. (See figure 1-4)

First we perform a rotation around the y axis by f, then a rotation
around the z; axis by ¢. The X, axis is now the new tangential direction and
the (YgX,) plane is a vertical plane. Finally we perform a rotation 4 around
the x, axis, so that finally X5 corresponds to ?, ¥, corresponds to ;1‘ and 2,
corresponds to b It s important to note that the Euler Angles are not

unique when the cable element is completely vertical and when this case occurs

new angles need to be defined.

It is possible to solve the equations without performing the rotation ¥
The {yp.X,} plane is then vertical, while this eliminates one variable ¢ out of
the equations. The expressions which were derived for the Darboux vector and

also for the force component of the tension are not, valid, however, and must
be  reformulated. For more details

72b] and [Firebaugh 72].

see [Cannon  72aj, {Cannon

To investigate the properties of three dimensional dynamics, it is
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Figure 1-4: Definition of Euler Angles
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preferable to use the natural coordinates. The transformation between the two

coordinate systems is given by:

x = cosfl - cos¢ x, + sing y_ - sinf - cos¢ z,

y == (siny - sind - cosy - sing - cosf) x_ .
+ cosy - cosg y, + (siny - cosd + cosy - sing - sind) z_ (1.28)

z = {cosy - sinf + singy - sing - cosd) X,
- sy - cos¢ y + (cosy - cosf - siny - sing - sinf) z,

where x .y .z  are the coordinates in the fixed coordinate system and

X.y.z are the coordinates in the natural coordinate system.

We can express the vertical unit vector in terms of the natural vector,

using the transpose of (1.28)
E = sing ?+ cosYy - cos¢ _:; - cos¢ - siny E (1.29)

The equations of motion are obtained as:

av 1 8T

&
m | — Vo - o = — - . sing
o Wy vy - Wy, ] Py + F,(1+e) w, - sing

3v2
(m+m_ ) ;?—t_ + miwgv, - w v

3) = Qs Te + Fn(l-l-e) - W, cos¢ cosy (1.30)

3
{m+m_, ) 5—;— + mlw,v, - Wo¥,) = Fy(l4e) + W, cos¢ - siny

The rotation vector expressed in Euler angles gives:
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@ dt = (sing 66 + 6¢) ¢

+ (cos¢ - cosy 68 + siny 6¢) ;

+ (- cosd - siny 80 + cosy 69) b {1.31)

In eomponent form we obtain:

a8 oy
W, = sing - — + —
ot at
o6 20
Wy = cosy) - cos¢ - — + siny - — (1.32)
at at
ae d¢
Wa = - siny - cos¢p - — + cosy - —
ot ot

The Darboux vector expressed in terms of Euler angles gives, using

Frenet's formulas:

it

8¢ 1

P g5  cosy

1 o O0¢
— = — - tany’ - tang - — {1.33)
T Js Js
o8 J¢ 1
0 == — + — - tant) -
ds Os cosg

1.10 Governing Equations using the Euler Angles

If (1.32) and (1.33) are substituted in the equations of motion and the
compatibility relations, the governing equations in terms of Euler angles are

obtained.
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v, a9 - 6¢)
m| —— 4 {cos¢ - cosy - — 4+ s1;ayY - — ] V
8t (cosé at o °
ae ¢

-1 - . sl .—--+-cos1.b-—)v
{ - cosg - siny P 2t 9

aT, ,
= 6_: + F (1+e) - w sing

( 2 msing - = )
m+ m )J—=-msing - — + — | v
Mot 8 o 3
as ¢
+ m{-cosd - singy - — + cosyp - — ) vy
at ot
% ! T, + F_{14¢) ¢
= — . e—— + 14€) - w_cos¢p - cosy
ds  cosy ¢ . °
( ) av, ( 268 8y
m+ m — + mising - — + — J v
LY Bt at) 2
a9 ¢
- m{cos¢ - cosy' - — + siny - — } vy
at at
= F (1+e) + w cos¢ - siny {1.34)
avl Vo do Jde
Js cosy ds - at
3\'2 Iy ‘ ¢ v, ¢
—_ —-tan@‘-tan¢-—]v3+———-—.
as Js cosy Js

] o 0¢
= (1+e)[-005¢ Sy - (—?- + cosy - B_
t t
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= -(1+e][cos¢ COSY = 4 SINY -
- ot ot

-_— — - tany - . —_
Js as v olane Js A
T, = fle}

These constitute a set of seven equations with seven unknows,

a9 ¢ ]

the non-linear governing equations in terms of Euler angles.

1.11 Two Dimensional Non-Linear

The governing equations ({1.28)

(see figure 1-5)
Ql

motions are planar.

“)

Governing Equations

are simplified sigmnificantly when

Therefore the equations can be written explicitly as:

oy e - wsino + Fyfise)
ml— - v, w = —— - W SINY + +e
2 2 3] s o dt
o T 4 ¢ + Fyli+e) —2
s V. Wl = — « W _c05¢ + +e) - m =
IIlLat + vy 3] ¢ B o da a Bt

{1.34) are

the
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be

Figure 1-5:

Two dimensional Cable Dynamics
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3\'1 v, de

—_— e {1.33])
ds '/ ot

Jv, v,

— 4+ — = (1+B)L~'3

Os p

d1/p Bu,

B

1
where: F (1+e) = ;prDtDo (Ucosg - v} [Ucoso - v | (i+e/2)

1
Fypllte) = - ;prDnDo (Using + v_) |Using + v_| (1+e/2)

U = current

In the two dimensional case we have:

1
_=¢S
p
wy = ¢

Therefore we obtain the final form of the non-linear, two dimensional

equations expressed in natural coordinates:

6\-‘1 aT, _ Fo )
mj—~— - v,0,| = — - w _sing + 1+e

[BL 2 t] Os ° de

ov d¢ av

2
m[—2 + v1¢t] = T,— - wos¢ + F, (l+e) - m —=
Os at



v = Oe (1.36)
Js s 2 ot
ov,
— + ¢, v, = (l+e)d,
Js
de )
T = r(e [ ¥ S
¢ ot

(5 equations with 5 unknowns)

1.12 Investigation of the Characteristics of the Governing Equations

The non-linear cable equations can be classified mathematically as a

quasi-linear first order system, when the constitutive relation Is of the form:
T, = fle)

In the case of a Kelvin visco-elastic damping model, the system is not
quasi-linear and the investigation of the properties of the governing equations
becomes very difficult. When restricted to the constitutive relation above, the
system can be written as!

v, av

[ | -

To investigate whether characteristic lines x = €(t) exist, or equivalently
whether the system can be written in terms of total derivatives only, linear
combinations of the set of equations (1.37) are formed [Whitham 74).

v

i i
L P L 8 PR bl =0 (1.38)

1 .
The tensor summation copvention is used.
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We want to rewrite these equations using total derivatives along the
characteristic curves.
dv, d€
L—+b =0 on — = ¢ {(1.39)
dt dt

This is only possible when:

This is the condition to determine a characteristic line. To be able to
determine completely the system, we must have n different characteristics, so

that the condition:
|aij -¢l=0
must provide n real eigenvalues.

We restrict our analysis to the two dimensional case. See [Critescu 67]
for a derivation in three dimensions and in a Cartesian coordinate system.
The quasi-linear form of the non-linear, two dimensional equations s given in

the next page.

After some manipulation, the characteristics can be found as:

1ot}
=t [l ek

T ! (1.40)
ctr=i[wT‘;_)}2

Four real and distinct eigenfrequencies are obtained, so the system is
hyperbolic. ~ Critescu obtained the same result for three dimensional shapes.
The resulting waves can be classified as elastic waves and transverse waves. If
the system is considered inextensible, the elastic wave speed goes to infinity

and the system can be classified as hyperbolic-parabolic. For a linear-teasion
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av, o V“_ VoY, o 1 dv,
at l+e I+e de m Os
2 F
ov, o ] }lvt T- hvy 0 av,
M I+e M 14e ds
- +B
¢ 1 vy d¢
0 : 0
at l4e 14e ds
de de
1 0 VYo 0
|8t | L ds |
where: w, o Fy, 1 &t
- — sing + —{(l4+e) + — —
m m m Js
w F, {I+e)
-2 cosp 4 ST
B =
0
H
| -

(M=m+m3)

Table 1-I: Quasi-linear Form of the Two Dimensional Equations of Motion
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strain relation the elastic wavespeed can be rewriiten as:

E .1
ce1=[_]§
P
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Chapter 2

STATICS AND
LINEARISED CABLE DYNAMICS

2.1 Introduction

Static solutions can be obtained from the governing equations derived in
chapter 1 by retaining only the time independent terms. For a cable hanging
solely under its own weight, the results are the well Kknown catenary
equations [irvine 81]. An important simplification of the dynamic problem is
obtained when the solution is assumed to consist of a static part and small
oscillations around this mean position. The governing equations can then be

separated in non-linear static and linearised dynamic equations.

The static problem, including hydrodynamic loading, bas been investigated
extensively,. For a review see [Casarella 70]. The linearised cable dynamic
equations bave been derived by Goodman and Breslin [Breshn 74] Tor two
dimensions. Linearised dynamic equations for the case of a towed

configuration can be found in {Firebaugh 72

2.2 Static Equations in Three Dimensions

By setting all dynamic quantities equal to zero in (1.30) and (1.33) we

obtain the following set of static equations, with a subseript o to denote static

quantities:



50
8T

€0
s

+ F (1 +e)-w, -sing = 0
Qyy - T, + Fooll +e)-w - cosg_ - cosyy, = 0

]-"bo(l + eo) + W, - cosg - sim,bo =10

a1 o, (2.1)
VR
cosyy,  Os
oy i
0, =—"-. tany - tang - —°
10 5 ° ® B
ae do 1
— + — - tang, - =0
Js ds oS¢

where F Foo Fy, 8re the components in the (t, . ;o . b, ] system
of the bydrodynamic drag forces. The external forces can be expressed in

terms of the Euler angles as:

1
Flo(l te) =- o Pw Cdt Do Yie | Yir f (1+e°/2]
1 1
_ .2 2\ :
Foo (b + e} = - - P Cas D, (v, + Vi )2 Vorll+e /2)
1 1
— 2 2 \a
I:‘bo{1 + eo] - - ;pw Cdl:a Do { Vor + Vor 2 vbr“+eof’2)
where Yoo » ¥op v Vi 3re, I this case, the components in the ( t,, o

O 1

—

b, ) system of the current velocity, which can be expressed as:
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vy, = - U - cos(ﬁo - a) - cosg,_
v, =-U { sin(f, - a} - siny - cos{d, - a) - sing, - cosyl, ]

vy =-U [ sin(d) - o) - cosy + cos(f, - a) - sing, - siny, ]
where a is the angle between the current velocity U and the X axis in
the horizontal plane (see figure 2-1).
The above equations can be simplified as:

e0

+ F (1l +e)-w, - sing =0

Tm» 24+ F (1 4+e)-w - cosy -cosp =0
cosy'  Os oo ° ? ¢ ¢
° (2.2}

Fbofl <+ eo) + w, - siny, - cosg, = 0
T cosg Of

0 ° 2. Fooll + &) + w, - costy, - cosg = 0

siny, s

The following three geometric relations must be added:

dx _
g-_ = (I+e, ) cosﬁ‘o © COSQ,

SO
ay .
a_ = (l+e, ) - sing, {2.3)
SO
0z i
. = - (14, ) sinf - cosd,

50

together with a tension-strain relation:



-5%2.

V)

Figure 2-1: Delinition of the Current in Euler Angles
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T =E A-e

*Q
Equations (2.2) and (2.3) constitute the complete set of governing
equations for static analysis. The non-linear ordinary differential equations
must be supplemeu"ted with appropriate initial conditions for numericsl
integration. In most mooring applications a horizontal force or tension is
applied at the top, in a prescribed direction. The prescribed water depth D

is an integral constraint:

1
D, = f (1+e,) sing, ds (2.4)
1]

An iterative, shooting method, using the angle ¢, can be used to satisfy

this constraint.

In two dimensions the static equations can be written, with ¢ = 0 and
— 2.
90 = 0, as“:
aT
ds == Yo 5im"’o Fto(l +e)
3o, (2.5)
T.o ;')‘:- = w_cosg_ - F (1 +e)

with: F (1 + e}

+ 0.50, Cp, D, U cos¢, | Ucoso, | (1+e /2)

F (1l +e)=- 0.5, Cpg D, U sing, | Using, | (1+e_/2)

The static equations {2.5) are sccompanied by the following two

geometric relations:

2 Lhe subscript | indicates static variables.



ox
= = (l+e,) cosé,
By - (2.6)
?8; = (I+e,) sing,

and a tension-strain relation as in the three-dimensional case.

2.3 Linear Dynamic Equations

Next we derive the equations governing the dynamics of small deviations

from the static configuration, i.e. we set:

T,=T, + T,
¢=¢‘o+¢1
9=60+81
'JJ“'I’O-E-IDI

= Q3 + O
The dynamic part3, T, etc., is small compared with the static part, T,
etec.  Similarly, the velocities {v), v va) and rotations {w;. w, w;) are
assumed to be small when properly non-dimensionalized. To linearize the
equation of motions we project the equations on the static referemce system.
Then we proceed to subtract the static equations from the dynamic equations
and to simplify the remaining terms by retaining only first order combinations

in the dynami iti :
dynamic quantities. We obtain, after a lengthy linearisation process,

3
The subseript i ;
pu for the effective tension will be dropped, for convenience. in the sequel
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the equations:

aT

v

Qs

1 1
m - — = —+ F
at ds t
+ Qg T, - {siny - cosp - 0, - cosy - &) )
6\!2
M, - PRl flyy - Ty+ Oy - Ty, +F
aT,
+ -5—- ( - siny:, - cosg, - B, + cos - Ql) (2.7)
s
6\-'3 BTO
M3 —_— = Fb“ + — (- cosy', - coso_ - 91 - siny - @y )
ot Os
+ Sy T, - (sing, - 6, + ¥, )
where M, = m+m, , M, = m+m,, and Fo., , Fupy o F, denote the

linearisation of the hydrodynamic drag forces Ft|1+e) , Fo(l+e) . F(l+e)
projected on the static reference system minus the drag forces on the static

shape. (See chapter 6) Similarly, we proceed to linearise the compatibility

relations.
TSN D ..
s ¥ s EA Bt
a"
--—2+\l an-v3 Qm=w3 (1+e°) (2.5}
Jds
v
~ 34 vy - g = - Wy (1+e, )
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The linearisation of the relation between the rotation and the Darbouy

vectors gives:

an dw
11 1
— = —— - wy -
at ds
dw,
ds
o dw
ot Js
The Darboux vector expressed in Euler angles gives:
.. o 0%,
93] - (‘OSL'O - an ' smg:o . “’1 = ——
ds
oy t i
Qll = i—’ - ( an¢o "{I + tanvo . ¢ ) Eﬁg
a 2 [ 1 a ., 1
s cos® Y cos” ¢ ds
tany' - tang %
- tany" - tang —
1] 0 65
{2.10}
of do 1 a
0::-——1-}---—1 tany +_ﬂ. 1 . !
Os ds cosp,  Os coszrﬂ0 ! cosg,
8¢ tan¢
+ -'otam,'-o . 2.
s c05¢° 1

The rotation vector, expressed in Euler angles, gives:
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_ 691 61;'1
W, = sing,, - — + —
dat at
cosy ¢ % + si % (2.11)
W, = - cosg - — 4+ siny - —— 211
° ° R ° B
o e 09,
W, = - siny_ - cos¢_ - — + cosy_ - ——
3 [\ o at o ot

Next we introduce small dynamic displacements (p,q,r) along the static

(ty My b,) directions respectively. To first order the velocities are given

dp
v. = — + (HO.T,)
bt

| =
dq
v, = — + (H.O.T.) {2.12)
at
o H.O
y, == — + (HOT,)
3 ot

We should point out here that relations (2.12) will be modified

substantially in the non-linear case, because p, q, 1 are defined in the direction

—

— —
of the static vectors t n,, b, while the velocities are defined along the

0

—

¥
- i -
dynamic vectors t , D , b.

Next, we observe that all dynamic equations, except for (2.7). can be
reduced by one time derivative if we use equations (2.11} to eliminate

(w, » wy s wg). Thus we obtain for the equations of motion:
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9 aT
m - o=t Fon
at? s
+ Q T, - (sing, - cosg, - &) - cosy - o, )
62q
Mz'gt‘f“nw‘Ta"'nal’To"‘Fnu
To s ' 2.13
+ ‘—?-b—— ( - siny, - cosg_ - & + cosy, - &) {2.13)
& 6T0 ‘
MS'?: Fou +;(-cosn’)u - cosg, - 0, - siny, - B, )

+ 0y T, - (sing, - 6, + ¢, )

The compatibility relations become:

ap q T,
—_— q . — ———
85 W EA

dq
3 Py Q= (- sing, - cosg_ - B+ cosy, - @, Nlde, )(2.14)
s

dr

.é_s. + q - QIU = - (COSL’r‘o . CO‘S(I"O - 01'!‘ Sinﬂi‘o : ¢l )(1-{-80 )

where the linearised component of the Darboux vector satisfies relation

{2.10).

We have as dynamic variables the quantities p, q, 1, ¢, 8,, ¥, Oy, 3
and T,. which must satisfy a set of nine differential equations (2.10), (2.13)
and (2.14). The above equations are the complete, linear, three-dimensional

equations of motion of a cable about an arbitrary, three-dimensional, static
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configuration.

2.4 Three-dimensional Linear Dynamics of a Cable with Two-

Dimensional Static Configuration

In the particular case of a cable with a two-dimensional static
configuration, the governing equations can be set in a simple form, which can

provide a number of important solutions.

When the static configuration is planar then:

¥, =0
B, == const (= 0 for convenience)
=0

and equations (2.13) through (2.14) can be simplified as follows:

#%p  OT, ¢,
m:—r=——-+ T —9 +F
ot ds °9s 1 il
8%q  do, 89, oT, o
1\42 ' -3'1"2' = Eq—'Tl + ‘é—t—‘To + g¢l + Fnli (2.13)
&' e o Ta¢°('¢9+¢v)+F
N — . me— . » —— n .
M, Y. » cos¢ 0, + 5 sing -8, 1 bij

where we used that in this case

dé
Qgp = —

ds

a4,
37 = —

Os
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with the compatibility relations:

ap aéu Tl

——
— . —

s ds E-A

dq 8¢
-'"+|J—_°=¢] (1+90)
s os

dJr

— = - cos¢, - O, (1+ey)
ds

{2.16)

The equations for the in-plane dynamics (p,q), therefore, including the

compatibility relations, are completely decoupled from the equation for the out-

of-plane motion r, for the case of a static two-dimensional configuration:

d°p o7, T 8¢, .
m —=-—-T, - — ¢ +
Y. "SR ® ro ol
y o%q  dg, T L .
, — = — T, +— T + — +
coot ds I ds ° 5 #) o1l
ap d¢o Tl
ds ds N E-.-A
dq d

+ %o ¢, (1+e_ |
—+p — = +e
ds l [4]

The solution method for the above equations, for the case

current, will be the focus of chapter 3.

of zero
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2.5 Out-of-Plane Dynamics

From equation (2.10} by setting v, = 0, we obtain:

; 0, 11 s a0,
Y, = | — T T
1 Js ] 0 as

Using the third compatiblity relation of (2.16}, the equation of motion in
the out-of-plane direction becomes:

v 3 8 . 1 r
D= — : B P - (2.18)
3 at? ds [ 1+e s bll

which is a string equation with variable tension.  The out-of-plane
dynamics are completely uncoupled within linear theoty, therefore, and their

governing equation can be brought to the simple form of (2.18).

2.8 Linearisation of External Forces

The linearisation of the external drag forces is a difficult problem. Not
only are the hydrodynamic forces dilficult to linearise due to their quadratic
form, but thev depend also on the local inclination angle. Therefore, their
linearisation will provide additional angle dependent terms, which should be

included in the equations. (See chapter 6)
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Chapter 3

SOLUTIONS FOR LINEAR DYNAMICS

3.1 Introduction

In this chapter, we will describe in detail the solution for the linearised
equations of a uniform, single span cable, with a two dimensional static
configuration. To highlight the interesting dynamic properties of cables. we
will restrict ourselves to the case where the gravity force is dominant over the
static current force, although the methodology cap be extended to include a
current. This assumption will also permit direct comparison with previous

work on linearised cable dynamics.

The emphasis was put on analytical solutions and the physical
explanation of the dynamic characteristics. This will hopely lead to a better
understanding and improved designs of cable systems which are subject to

dynamic loads.

Our primary interest will be in the calculation of the eigenmodes and
eigenvalues, which can be used, within the frame of linear systems analvsis, 10

solve any loading problem of the cable.

3.2 Governing Equations

The governing equations were derived in chapter 2. The in-plane and
out-of-plane dynamics are uncoupled and can be written, under the

assumptions described above, as:
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In-plane motion:

#p 8T s
m == = s - W C05¢
o> o 0 o
32(1 a¢o a¢1
M = —T + =T 4w sin¢¢
& a8 ' ogs ° 0 o)
{3.1)
ap 8¢,
—_—--q — = el
Os &5
dq oo
—+p—"=9, (l+e, )
gs ds
Out-of-plane motion:
ar 0 9¢_ .1 cosé O
ERHE R
a1 ds ds l+e 8

The out-of-plane equation is a simple taut string equation with variable

tepsion along the length.

3.3 Strings

The taut wire is the first cable to attract attention, because it was used
for musical instruments. Pythagoras in the 6th century BC and Aristotle in
the 3rd century BC knew quantatively the relation between frequency, tension
and length of a taut chord. Galileo (1564 - 1842) in 1638, and the monk
M. Mersenne (1588 - 1648) in 1638, published qualitative relations based on
experimental measurements. R. Hooke {1635 - 1703) and J. Sauveur (1653 -
1718) published also experimental measurements of taut wire frequencies and

obeservations of modes for the various harmourics.
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B. Taylor (1685 - 1731) in 1713 published the first dynamic solution of
the transverse cable dynamics by assuming a response shape. Daniel Bernoull
(1700 - 1782) published in 1738 theorems of oscillations of hanging chains and
in 1755 his superposition principle of several harmonics for the taut wire,
which was opposed, surprisingly, both by D'Alembert and Euler and remained
coptroversial until 1822, when Fourier illustrated such superpositions.
D'Alembert (1736 - 1813) was the first to derive the partial differential
equation governing the small amplitude transverse motion of a taut wire and
JL. Lagrange (1736 -1813) solved fully the problem by considering the string
as consisting of many (n) interconnected mass particles and then taking the

limit as n — .

Euler (1707 - 1783) derived the equation of a hanging chain and then
obtained a series solution and an estimate of the 3 first natural frequencies.
S.D. Poisson (1781 - 1840) derived the equation of a cable element subject to
an external force in 1820, and used it to derive a final solution to the

problems of the hanging chain and of the taut wire,

In the case of a taut wire with zero gravity force, the static angle o

and the curvature d¢_/ds are zero, so we obtain [see figure 3-1):

o’ 9T,
m — = -
ot Bs
" 8%q 0,
a2 ° 8s
op (3.3)
P
]
dq
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.

IHI\H

1L

Figure 3-1: Taut String
with T, = E. A_- )

Assuming a taut wire in air, we obtain:

#q T, &%
p"’\n —-: = ' )
aNn- I+e — 8s*
{(3-4)
('Jr"‘p ('3‘2|1
p _.....'.;_ = E -
- P

Equations (3.4) are the equations for the transverse and for the
longitudinal (elastic) dvnamics. The two equations are uncoupled and the first
equation gives the impression that elasticity plays no role in the transverse
dynamics.  This is of course erroneous, because an inelastic wire simply can
not vibrate (it is geometrically impossible to create waves on an inelastic
straight line, because it can not accepl evep the infinitesimal stretch, which is
required to adjust the increased length of a non-straight configuration). So

elasticity i< not important quantitatively, but very important qualitatively, and
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any solution that assumes the elastic stiffness as infinite is bound to [ail to

reproduce the taut wire results.

The natural frequencies for a taut wire of length L are obtained by

taking the Fourier transform of (3.4).4

T d%g

- PA, W q == —
l+e, ds~

(3.5)
dgp
2

-pwp=FE—

ds-

with: q(0) = qL} = 0

p(0}) = p(l} = O
and since the general solution is:

q(s) = ¢, sinlk; s} + ¢, cos(k, s)

p(s) = ¢, sin(k, s} + ¢, cos(k, s)

with: k, == d 7
[T/pAo{l+eO )J
[
"

*When ap equation is written in the sequel in the frequency domain, the dynamic variables
represent the complex amplitude of the dyramic quantities.



we obtaio:

T

nr
W o= e— [ _— ]1/2 transverse, n=1,23...
"L | pA%l4e, )

mr , E
W = — [ - ]1/2 elastic, m=—1,2,3...

m L P

3.4 Hanging Chains

Figure 3-2: Hanging Chain

The freely hanging cable in air (see figure 3-2) has also been studied
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extensively, first by, Poisson who derived the governing equations. Within the

. o
present framework, we have ¢_ = n/2 :i-;— = 0, To = W s
Fo_ 0 et 0

ot? ds l+eo s ]

. (3.6)
*p 8%p
p—=E —
at° ds?

The same elastic solution is found, therefore, in the tangential direction.
In the normal direction, after making the assumption that the cable extension
caused by its own weight is negligible, we obtain in air the equation:
. d dq

- W = — | g — 3.7
17 % gds] (8:7)

and the solution is:
§ 8
qfs) = ¢, Jo(Qw[-]llg)+ ¢, yo(‘zw[-]l/?) (3.8)
g g
where J is the Bessel function of the first kind and order zero, and Y
the Bessel function of the second kind and order zero. In order for tbe
solution to remain finite at s = 0, the second term must vanish since Y  is
infinite at s = 0, so the natural frequencies are obtained simply as roots of
L

- ]l/ff ) =0 (3.9)

JO(Qw -

The first five roots can be found as [Hildebrand 49}

n 1 2 3 4 5

w[L/g]“ T 1004 2.760 4.327 5.806 7.465

In the case of a vertical chain with non zero lower end tension. the
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equation for the transverse dynamics becomes, after neglecting the effect of the
static strain:

#q & dq
PP LR 6‘5] (310)

The static tepsion is lineary varying from the bottom to the top. To

find the eigenfrequencies, we have to solve the following eigenvalue problem:
d T dq
-w2q=-{(—°+g51-] (3.11)
dsl m ds

with boundary condition q(0) = ¢(L) = 0

The solution of known problem is also expressible in terms of zeroth
order Besse] lunctions:

Q[m]l/2
If we denote: 7 =

W
0

then: qs) = ¢, J ' Y w, s + T ) 172 ]

+ Ca yo - yw (wo s + To ) 1/2 ] (3.12)

3.5 WKB Solution for Strings with Variable Tension

The transverse equation for strings with variable tension is given by:

0

-

§ 0 dq
Mis) — = — | Tis) — ] 3.13
e 5 (s) Py {3.13]

Taking the Fourier Tramsform and non-dimensionalising the length

variable 0 = s/, we obtain:
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d dq ) 2
_ [ T(o) — ] + L2 M) o q =0 (3.14)
de do
This equation is suitable to be solved using asymptotic analysis, if we

assume that:

- T(6} and M(o) are slowly varying (compared with the dynamic

solution) functions of o

- or the non-dimensional frequency &° is large. F = Muw" LQ/T

It is important to note that if one or both of the above conditions are
met, the asymptotic analysis will be valid. ~We perform a transformation of
variables suggested by Nayfeh [Nayfeh 73]

=[]
After substitution and expansion of the derivatives, we obtain:
T 1T 2LiM

1

£+ -——+--—-+——--——]§=0 (3.15)
2T 4T? T

If the conditions formulated above are met, we can try to find a WKB®

expansion of the form:

£ == e“8 + By ¥ Bo/u £/’ (3.16)

where the coelficients are determined from substitution in (3.15). The
leading order approximation is:
i

€= oo exp{ + iwl fO(M,fT}‘/2 do } (3.17)

5Expm:s;iou named after Wentzel, Kramers and Brillouin
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So the following solution for the transverse displacement is obtained:

1

17

exp{ + il f (M/T)'/? do} (3.18)
0

(for a higher order approximation, see appendix B.)

Example: WKB solution for a string with linearly varying tension.
The solution is given as:

1
q= [M(WOLU‘*‘T:.)FH exp (

+i gw(MIﬁ/wo)[(woLﬁTo)‘/Q ; Tolﬁl }119)

where ¢ is the non-dimensional length.

This example is used in part I, to find the accuracy of the WKB
method versus the exact solution. The above solution is increasingly more

accurate as the tension variation per wavelength becomes smaller.

The solution breaks down when the lower end tension becomes zero as
can be seen in (3.19). The governing equation bas a singular turning point.

The solution was first formulated by Langer and can be found in [Nayfeh 73]

as follows:

We assume an expansion for the tension as:

T = ac 4 bo?
The solution can be written as:
(W)/2
qls) = VI C,(wL W) (3.20)

7 do

where: W = ,/;(T/M)lﬂ

€, are the cylinder functions of zeroth order (J,+ ¥, ). In the case of 3
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freely hanging chain, the solution (3.20) is identical with the exact solution.
The WKEB solution can be found from (3.20) or from the exact solution (3.8}

using the large argument asymptotic approximation for the Bessel functions.

It is interesting to note that for constant temsion, the WKB solution is
the exact solution, and for linear varying temsiom, the singular turning point
analysis gives the exact solution. In most cable analyses the tension variation
between top and bottom is not very large, so that a regular WKB solution

seems more than adequate to solve equations of the type (3.13)

Although the WKB method is mot valid for a first order pole of the
equation (3.15), the WKB method remains valid fore a second order pole of
(3.15). This means that for static tension of quadratic dependence in the
space coordinate, the WKEB solution remains valid, even close to the
singularity. This relatively unknown feature of the WKB solution is particular
important in very slack cables, where the tension at the point of lowest

tension varies quadratically.

This can be proved as follows: we consider a quadratic tension variation
T = be>. The first order WKB solution is obtained from:
T W2 L2 M
€ + £ =0 (3.21}
bo?

The solution is:

l a
- WL | IoM/T)V 34 (3.22
£ (M/T)mexp{-}_w j;l( /T)/*ds } )

Expansion of (3.22) for small values of o, assuming wL(M/b]l/2 large,

gives:

€ ~ o exp {1/2 £ il (M/D)'/?) (3.23)
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If we perform local analysis of (3.21) directly by assuming a solution »'

pear ¢ = 0, we obtain again as solutjon:
€~ o exp {1/2 T iul (M/b)/% (3.24)

i.e., the WKB method has the correct asymptotic behavior for small o.

3.8 Inextensible Cables

Next we consider the dynamic behavior of a uniform inextensible chain in
the plane of its equilibrium configuration. The oscillations are assumed to be
small, so that the linearised equations can be used. The governing equations

(3.1} can now be written as:

a°p 0T
m-——=——- w_ cos¢_ ¢
at? Js ° ° "l
6°q 8o 8¢
M—=—T 4+ T {w sing ¢
a Os ' g ©° o 5% )
op do,, (3.25)
—_—-g—2 =
ds Os
dq do,
Tt p— = ¢
ds ds !

where m and M are assumed to be constant.

The previous equations were obtained from (3.1) using the assumption
that the strain is zero. Note, however, that the dynamic tension is not equal
o zero, Le. a2 motion of the cable can still generate tension, although it does

Dot gepetate strain. Wo write the displacements p and q in non-dimensional
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form as £ , y . The variable ¢ now denotes the non-dimensiopal length.

Taking the Fourier transform of (3.25):

- dT1
- mL* w* £ = — - w L cos¢, ¢,
do
d¢ d¢
..Nﬂ_,2 w2q=T1—0+To""‘l'+woL5in¢o¢l
de do
€ o, (3.26)
—_—py — = 0
de do
dn do,
do dor

The study of the eigenfrequencies and modes of ap inextensible chain
hanging between two points at the same level was initiated by Rohrs in
1851 [Rohrs 51]. Routh studied the exact solution for a chain hapging mn the
form of a cycloid [Routh 55]. He obtained bis cycloidal shape by taking a
cable with non-uniform mass. For this case, the dynamic equations car be
solved exactly. For the small sag case his results are reduced to the results of

Rohrs who used a priori the small sag assumption for his analysis.

Pugsley [Pugsley 49] derived semi-empirical formulas to predict the
eigenfrequencies for a uniform chain. An approximate solution for the
linearised chain problem was derived by Saxon and Cahn [Saxon 53]. Their
results, based on a second order perturbation method, predict accurately the
eigenfrequencies and eigenmodes for relatively flat chains, or for higher order
modes.  Goodey [Goodey 61] arrived at similar results starting from the

intrinsic form of the chain problem.

This analvsis will follow closely the one used by Saxon and Cahn. A
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more careful perturbation analysis of the problem reveals however that a
revised first order perturbation scheme is able to predict the eigenfrequencies
and eigenmodes far beyond the validity of the second order solution derived by

Saxon and Cabn.

The effect of added mass is directly included in the derivation. The
derived solutions can be used equally well to predict eigenmodes and
eigenfrequencies of inclined inextensible chains, or to caleulate the response to

an imposed excitation al one end.

3.8.1 Statics

Some basic equations from the static analysis are needed in our
derivation. For a catenary differential element equilibrium of the forces gives:
(The following relations are valid for extensible cables as well, if the weight is

the only external force.)

do,
'I‘0 — = w, L cos¢,
do
(3.27)
dT
;;3 = w, L sing,
Then the following basic static relations are obtained from {3.27):
T H
° coséo
(3.28)
doo o
— = a 0579,
do

H is the horizonta) tension in the chain and a (=wL/H) is the ratio of

the total weight of the catepary in the appropriate fluid and the horizontal
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tension.

The ratio o and the vslue of the static angle at some specilic point
along the cable define completely the static shape of the chain bhanging under
its own weight. As it will be seen in the sequel, they define also, together
with the added mass, the dynamic behavior. The following wuseful relation

exists between the top angle ¢,, the bottom angle ¢, and a:
tang, = tang, + a
For a chain which is tangential to the bottom:
tang, = a
while for the case ol a horizontal chain:
b, = - &,
80!

2 tang, = a.

3.6.2 Horizontal, Small Sag, Inextensible Cable

Rohrs derived the dynamic solution for a shallow sag, inextensible cable.

which we will re-derive here to illustrate the various concepts involved.

The case of an inextensible cable, hanging between two points of equal
height is considered. A Lagrangian coordinate o, with the origin at the center
of the cable is introduced. (See figure 3-3). When the cable is assumed to he

shallow {sag over span less than 1/8) the following approximations are valid.
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Figure 3-3: Shallow Sag, Horizontal Cable

I: Span of the cable

L: Length of the cable

H: Horizontal tension
b: sag
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“rrge)

where: b = sag
] == span
= w_L/H

1]
H = horizontal tension
L

= Jength of the cable

From the above equations, we note that for shallow sag cables:

Rohrs derived solutions

w OL

<<1

the eigenfrequencies and mode

Starting with the general inextensible governing equations:

dT

-ml? = —2. w, L coso ¢,
do

do do

-ML? WP g = T, —2 —L 4 w_Lsing, o,
do do

¢ de,

g 2=

do de

dn dé,

— 4 — ¢]

do de

(3.29)

shapes.

Note that the non-dimensional natural frequencies will be of the same

order of magnitude as those of a taut string with equivalent mass and average

tension. This means that:
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2

ML
WP — =0 (0® ) n=1,23..
H
is a number much larger than ! even for the first eigenfrequencies.
Therefore we can conclude that:
2
ML w L

w? "’ >> . (3.31)

From the third relation of {3.30), we note that:
d de
X% (3.2
de do

so that the rate of change for £ is small, of order a. CQur main interest

is in motions for which the boundary conditions are fixed (or at least at one

end is fixed}). If we assume that n is of the same order as ¢, then we can

conclude that:
£=0 ()

Using the last relation of (3.25), the order of ¢, can be determined as:

6, = 0 ()
We obtain from the equrtion for tangential dynamics, using (3.29)
a
T, =T, + [o - me? L2 € + w Lo, ) ds (3.33

where T, is an integration constant.

This can be substituted in the relation for the normal dynamics, using

(3.29):

n

a
Mo L2 g = a [ Tlo + f(-mw2 L2 £ + WQL¢)l ) ds
]

de,
+ H 5-- + w Laog, {3.34)
r
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To leading order:

a n
MWL g =aT, +H F + O(e? ) {3.35}
§2

which gives as solution:

aT

. c . 1o
nlo) = ¢, sintkLo} + ¢, cos{kLo) -———ng . (3.36)
M
with: k = w { - ]1/5’
H
To find the eigenfrequencies, we impose fixed boundary conditions:
1 1
ni- -} =az) =0
2 2
Anti-symmetric modes of (3.36) are only possible if:
¢y = 0
Tlo =0
kL
= nr (3.37}

These are the odd modes with respect to the middle point of the cable
and are completely equivalent to the corresponding string modes. Note also

that no additional tension is generated.

The even, or symmetric modes (in the transverse patural displacement)
ate obtained as:
aT,, coskLe

no) = - -1 ] (3.38)
Muw? L® | coskL/2

Apparently no eigenfrequencies requirement can be derived from {3.38).
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However, we have also to consider the boundary conditions in the tangentia)
direction. Expressing the tangential motion as a function of the transverse
solution, gives:
a? Tio 1  sioklLe

— | — —— -0 |+ C 3.30)
Mw? L? LKL coskL/2 (

flo) =
The boundary conditions in this case are
£1/2) = g-1/2) =0
They can only be satisfied il the integral C = 0 and:
tan(kL/2) = kL/2

It is interesting to note that in this case a dynamic tension is generated
in the cable.  The first symmetric eigenfrequency is located at 2.86
compared to 7 for a string. This is due to the fact that the first symmetric
mode of a string is possible only if stretching is allowed, so for an inclastic
chain the geometric compatibility relations are modifying significantly the

modal shapes.

Table 3-1 gives the eigenfrequencies for a string and an inextensible cable.
Figure 3-4 shows a comparison between their mode shapes. Hopefully this
example illustrates the fundamental difference between cables and strings. We
will now discuss the general asymptotie solution for inextensible cables, without

making the simplifying small sag assumption.

3.8.3 Derivation of the Governing Equation in the form of a Fourth

Order Differential Equation

The linearised equations of motion of an inextensible chain can be written
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Anti-symmetric Modes

n 1 2 3 4
Chain
c‘Jn 2r 4 6r 8w
String
Symmetric Modes
n 1 2 3 4
Chain 2867 4.927 6.947 8.85~x
Jﬂ
String T 3r Sx ks

M
where; & = Wy L [ - ]”2
H

Table 3-1: Comparison between the Natural Frequencies of a String
and of an Inextensible Small Sag Cable



-84-
String Inextensible Cable

Symmetric

does pot exist

W= 3x w = 2.867

Figure 3-4: Comparison Mode Shapes of a String and
of an Inextensible, Small Sag Cable
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as!
R " dT,
me L= e Lo 4
{3.40})
d¢ dé
2 2 _ o 1 .
~-Muw' L —TIE-‘;—+TOEU—+W0Lsm¢°¢1

By defining a new dynamic angle ¢; = ¢,/a and a new non-dimensional
dynamic tension T; = TI/woL, and by using the static relations (3.28), and
the relation d¢ /fds = ocos%o to change the independent variable from o to

¢, the linearised equations can be written as:

mw? H , dT) .
- — § = cos” — - cosp, 9
w2
[v] o
{3.41)
M. H e do; .
- — n = cos¢, T, + cos¢, — + sing, ¢,
w? as,

We introduce two new parameters: b (=m/M), which is the ratio of the
mass over the mass plus added mass, and A2 (--—ng H/wg), which is the non-
dimensional frequency parameter.

After dropping the superscripts, the equations of motion can be written as:

N . 4T,
- h A £ = cosTg, — - cos¢,
d 0
o o de, ] (3.4
- 3 n = cos"g T, + <089, E-— + sing, @
1]

The non-dimensional {requency parameter X s fundamental for the
perturbation anpalysis. It cap be written as:

w ¢
A H

= {3.43]
h g {1-pfluid/pmat)
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The parameter X is large for high frequencies and for large horizontal

wave speeds (CH)‘

The compatibility relations are given by:

d§ dé,
—-pg—=10
do do
(3.44)
dn ¢ dé, ¢.
— + §f—"=¢ a
de de !
These equations can be rewritten (dropping the superseript) as:
d¢
_— ’J
do,,
dn 8, (3.45)
—_— e == -
de¢, cos"9,_

Equations (3.42) and (3.45) are the constitutive equations for the
dynamics of an inextensible chain. A change of independent variable has been
performed.  The static angle ¢, 1s now the independent variable instead of the
length scale.  This results in a simplification of the equations, so that

% . 0, . T, can be eliminated and a fourth order differential equation in £ is

obtained:
XQ
cosQ {H -2 sinoo Em + [ cosg + = ] f“
e
{3.46)
. sing A%, b A2
- 2] sng_ - ] - £E=20
[ e (‘053¢0 c052¢0
The superscripts denote differentiation with respect to ¢ . If h == 1, the

original equation derived by Saxon and Cabn is recovered [Saxon 53].

The preccribed boundary conditions for mooring line applications are
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pormally:
£o,) = 0 £(¢,) = given
ﬂ(él) = E¢0(¢l) = 0 Q(¢2] == €¢o(¢2) = given

Other boundary conditions can also be imposed. The eigenmodes and
eigenfrequencies are found by imposing homogeous boundary conditions at both

ends and searching for non-zero solutions.

3.6.4 Self-Adjoint Form

The constitutive equation is in self-adjoint form and the fourth order

differential equation can be written as:

cos“e

5 E=20 {3.47}
cos ¢0

The above equation reduces to (3.46} by expanding the derivatives.
Surprisingly, this fact seems to have escaped the attention of previous

researchers,

The above equation describes completely the linear dynamic behavior of
an inextensible cable under its own weight. The four governing equations Camn
be reduced to a single fourth order differential equation, only for inextensible

cables. The independent variable in the above equation is the static angle o

3.8.5 Orthogonality Condition

Using the self-adjoint form of the inextensible cable equation. the
following very important property for the eigenmodes can be proven (se¢

appendix C}.
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bop , £ £ b § & oy
/‘ top [ Gi & + G& dg¢, =0 for i) (3.48)
¢

2 2
cos*¢  cos“d,

bot
where £i , fj are the eigenmodes in the tangential direction with fixed

boundaries. We can rewrite the compatibility condition, using the Lagrangian

coordinate as the independent varisble as, ip the form:

1
](Lﬁ 7,8, + m§ Ej Jde =10 for i#j (3.49)
0
where:
RN} the components of the eigenmodes in the transverse direction
£ . Ej the components of the eigenmodes in the tangential direction

3.8.8 Derivation of Asymptotic Solutions

The solutions are achieved by postulating two different types of motion
when X is large.  One is wavelke and fast varying compared to the
coefficients of the equation. Physically it represents transverse waves in the
chain.  The other type of solution is slowly varying in space and represents
instant adjustement of the chain to a disturbance, so as to preserve constant

length {inextensible chain),
3.6.8.1 The Fast Solution
A solution in WKB form is proposed:
1 1
€= ep{ Mt + g + —Jb, + ;;Isl +..} (3.50)
A -

The novelty of the approach consists of substituting (3.50} directly in

(3.46) without making any simplifying sssumption a priori.
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The results were obtained by using MACSYMAS:

i

O\ L e,) =t

cos3/2¢o

. (3.51)
(¢, ) =0

The second solution indicates that two slow solutions must exist and will

be apalysed separately.

3 _ 7 sing,, )
O(x") g (o, ) = -~ {3.52)
4 casgﬁ0
o Y 28 - 16h 29 o ]
O(x") h) (o, ) = 51 ¢os “é, —-3?— - 5 tan“g (3.53)

Results for O(}) and O{1} were also calculated but for reasoms to be

given later, the usefulness of these results seems limited.

The fast solution can be written as:

& = cos”“qbo s (M + h/X ) (3.54)
¢, 1
where: | = / -—T/-Q— d¢,
o, €O8770,
o 98 - 16h 29 o
h=- f ocos3lr2¢0 — - — tan”9, déo
O 32 32

For the boundary value problem considered, the solution for the normal

displacement is also required. It is given by:

6\MACSYMA is a computer program used for performing symbolic and numerical
mathematical manipulations. I is developed by the Mathlab Group of the M.LT. Laboraten
of Computer Science
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np = - 7/4 cos3g sing S (M + h/A) s

o sin

s eosT/g (M 4+ B/ )R (M + BN (3.55)

COs

‘The solution (3.54) and (3.55) is, to leading order, eduivalent with the
Saxon and Cahn so}utioﬁ. However the second order terms are different from
the ones found by Saxon and Cahn.

Even more important, to obtain the normal displacement correct to O(1), a
term obtained directly from the leading order solution in '(.3.54), dppears in
(3.55). This term is not appearing in the Saxon and Cahr solution. The

correct solution to O(1) is therefore given by:

A

£ = cos7/§¢o €08 (M) ‘ (3.56)
mp = - 7/4 cos¥lg, sing, &5 (M) 3 cosT g, M 2 (o) (3.57)

_3.6.6.2 The Slow Solution

The slow solution is found from (3.46) by assuming X\ large, when the

equation becomes:

A2 ing 2
— ¢+ 2 -2 ¢ £ = 0(1) (3.58)
cos ¢, 205°¢ o cos ¢0 .
Simplification gives:
el + 2tang_ € - he = O(1/2? (3.59)

This equation is independent of the frequency. The solutions

are [Triaﬁtafyllou 82a):
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. k 3
& = (1) + b%ing + - (b-1)eos?s, + O(13) (3.60)
.
€ = (1-hcos®s_ + 3{3+h)[(¢o - -2-) sing, + cos¢o] + O(b%) (3.61)
'?;1 = [h2 . h(h-l)sinqﬁo] cosd  + 0(53) | (3.62)
| T |
o = - 3cosg, [(1-h)cos¢osin¢o - (3+h)(4, - -2-)] + O(h?) (3.63)

3.6.8.3 Total Solution

The total solution to (3.46) is given by linear combination of (3.56) (3.57)
and (3.60) - (3.63}.

A
i

Al + By + C¢,; + D&y

| (3.64)
7 = Angy + By + Cn, + Dy,

The eigenvalues ‘can be found, by finding the values of A\ for which:
r’?n(‘?—"l) ’?1'2(951) '351(451) ’?52(¢1) '
(e &le)  E6)  El6)

s ipld)  mgd)  mgley) (3.65)
En(dg)  Epld)  E1(6)  E.(0,)

Det

I
o

3.7 Verifica.tién of the Solution

We will verify the results by calculating the eigenfrequencies of an
inextensible chain hanging between two points at the same level. Many

experimental and calculated results have been published. [Pugsley 49], [Saxon
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53}, [Goodey 61]

3.7.1 Eigenfrequencies

The solution is considerably simplified by noting that one slow and one
fast solution are symmetric and the other anti-symmetric. The eigenfrequency
equation {3.85) can be separated, therefore, in one for even modes and one for

odd modes.

3.7.1.1 Odd Normal Modes

The requirement becomes':

ﬂ[1(¢o) _ ']51(¢0)
€8, €06

1 qbocoss/ 2¢°

tan{if+h/x) = - —
Al + h/(NT) Leoso, + ¢ sing,

+ 7/45int;fimt:osllzqgﬁO (3.66)

3.7.1.2 Even Normal Modes

The requirement becomes

ol 8,)  150(8,)
a0y} Eald,)

1 cos®/ 2¢
A[1+h/(ON21)] [ sing,

cot(Af+h/x) = ® + 7/4sing cos/2g (3.67)

To make use of the symmetry, the origin is selected in the middle of the cable. The
lower limit of the integrals i { and k is therefore 0. The angle ¢, is the static angle at the
end point.
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3.7.2 Consistency with Previous Results

For large A, the eigenfrequencies calculated by (3.66) and (3.67) give the
same results as derived by Saxon and Cahn [Saxon 53] and Goodey [Goodey

61].
3.7.2.1 Odd Normal Modes

Equation {3.66) can be rewritten for high order modes as:

nw f(h + k) 1
A= — 1-—-;—-5-—]+o[(-)] (3.68)
f n° nt 5/2
1 0 ¢ cos *¢
where: (b + k;) = - — f[i"z - 29tan2¢0)c053f2¢0d¢0 + — 2
32 Jo ¢°Sin¢0 + coso,

7
+ - sin¢500031/2¢°
4

which is identical to the formula derived by Saxom and Cahn, and by

Goodev.

3.7.2.2 Even Normal Modes

Equation (3.67) can be rewritten for high order modes as:
{n + 0.5

f(b + k) 1
_.._——»-[1-—-—-———,,+0(-;1 (3.69]
f {o +0.5)%r n

c056/2¢0

1 )
where: (h + k) = - — ] (‘1)2 - 29tan2¢0)c053/2¢0d¢0 +
- 32 Jy sing,

7
+ - sin¢ocos”2¢0
4

which is also identical to the result of Saxon and Cahn, and Goodey.
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3.7.3 Comparison of the Perturbation Results with the Numerical

Solutions

We will now compare pumerically the results obtained by the new
perturbation theory, with those of Saxon and Cabp and those of tbe finite
difference scheme. The figures on which the results are plotted have the same
format as the one used by Goodey (see figure 3-5). The horizontal axis is the
static angle at the top. The frequency is non-dimensionalised with respect to
the patural frequency of a pendulum with length equal to the chain span:

b

f [ - ]‘/2 (3.70)

where: [ = frequency
b == sag at midspan

The relation between the non-dimensional parameter A and the new non-

dimensional frequency parameter is obtained directly from statics:

b 1 - cosg A
¢ [ 2 ]1/2 = 05 [ __:f‘_OE ]1/2 2 (2.71)
g cosawp T

The results are shown in the figures 3-6 and 3-7 and are significant,

because:

- They clearly demonstrate the improved accuracy of the new first
order theory compared to tbe first order theory derived by Saxon

and Cabn.

- The new second order theory and that of Saxon and Cahn seem to

agree very well up to a certain point. when A becomes small and

they break down.
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- It is quite interesting that the mew first order theory gives good
results even for A small, which is outside of the validity range of

the assumptions used. No breakdown of the solution is observed.

- There are some erroneous roots of very low frequency appearing in
the first order Saxon and Cahn solution and to a lesser extent in
the second order perturbation solution. {Not shown on figure.} The

new first order solution does pot have this problem.

- The first order solution provides valid results even for top angles

very close to the limiting value of 90°.

3.7.4 Nearly Vertically Hanging Cables

The limit, as the top angle approaches 90° exists for the first order

perturbation theory.

For odd modes:

— 1 7 17
tan{4rf) = - —= - = tan(2uw} = - — - (3.72}
oo w 4
For even modes:
- 1 7 17
cotan(4n f) = —— - — cotan(2w) = — - (3.73}
2rf 4 w 4
- b b
with: f=f{—]1/2—->w=2n-f[-—]1/2
:4 g

The roots for . can be found in table 3-1l. The odd modes approach the
correct values for higher frequencies. The approximation seems to be stightly

better than the WKB approximation of the same problem (see table 3-11).
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new theory (in the limit) direct solution simple vertically

hanging cable attached at ome point

odd modes even modes Bessel WKEB first order
solution (exact)
1.057 1.204 /2
1.996 - -
2,868 2.760 . T
3.706 - -
4.527 4.327 3x/2

Table 3-II: Frequencies of a Vertically Hanging Chain

The explanation of this fact can be found in the way the temsion Is
approaching zero at the bottom of a hanging chain. It varies parabolically
near the bottom, compared to a linear variation for a vertically bhanging chain.
Ope of the lesser known characteristics of a first order WKB approximation Is.
as discussed before, that it is a valid approximation for singular perturbation
problems with parabolic singularities. This may also explain why the derived

solution remains valid in regions where the wave propagation speed is low.

The even modes have no counterpart in vertically hanging cables and
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they must be always considered for top angles pear, but never exactly equal to
90°. Clearly, at the midpoint region the equations break down wben the angle

is equal to 90°.

3.8 Extensible Cables

In this section the dynamic characteristics of elastic cables will be
investigated using the same type of perturbation analysis as for the
inextensible cables. The governing equations (3.1) can be written, using non-

dimensional displacements and Lagrangian coordinate, as:

., dT
-m L% §=——-w L cos¢ o,
do
, do d¢
-MLPW g =T — + T — + w_ Lsiog, ¢,
do do 0

(3.74)

The major change, compared to the inextensible governing equation is in
the tangential compatibility relation, where allowance is made for stretching
The modification of this geometric condition will have a profound effect on the

formation of modes.

The rather peculiar dynamic behavior of extensible cables has only
recently received appropriate attention. Davenport [Davenport 65] is ome of

the first to discuss dynamic properties of extensible cables for the case of the
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guys of a mast. Analytical solutions have been formulated for horizontal small
sag cables by Simpson [Simpson 66] and independently, using a different
method. by Irvine and Caughey [Irvine 74]. More recent work, of which this
report is a part, was done in the Ocean Engineering Departement at M.IT.

See for instance [Triantafyllou 83] and [Triantafyllou 84].

As in the case of inextensible cables, the analysis of a horizontal, small
sag cable, gives us valuable information about the more general cable behavior.
The static relations derived in subsection 3.6.1 remain valid for the extensible

cable.

3.8.1 Horizontal, Small Sag, Extensible Cable

The solution to this problem can be found in [Irvine 81], but will be

rederived here, using the analogy with the inextensible case.

The derivation is completely similar with the one in subsection 3.6.2. To

leading order the transverse dynamics can be wriften as:

o o H 4% R .
~Muwu Ll pg = GTIO-F-—-—-E-!—O(E" ) {3.75]
I+e, do

To find the integration constant T we cap use the tangential

lo’
compatibility relation in (3.74), which can be integrated between the boundaries
where £(1/2} = £-1/2)= 0:

. 1/2
—2 =_.a f nlo) do (3.76)
-1/2
In the above equation the implicit assumption was made that T, s

constant, and this is a good assumption when no longitudinal dypamics of the

cable are excited. An additional requirement for the validity of the theory 1s.
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therefore, that the f{requency is much lower than the first elastic
eigenfrequency of the cable. This additional requirement was not needed in
the case of an inextensible cable, because the relation between normal and
tangentia] displacements are completely fixed due (o the tangential

compatibility relation.

The governing equation is obtained by substituting (3.76) in (3.75).

H 4y 1/2
-+ M w L g =e’EA [ o) do (3.77)
1 + e do -1/2
woL
where; a =
H

The above equation is completely equivalent with the governing equation
derived by Irvine and Caughey [Irvine 74]. The orly minor difference can be
found in the fact that Irvine introduced the concept of an effective length .
It is the author’s opinion that this introduction is not usefull and the actual

unstretched length of the cable should be used consistently.

The eigenmodes of the above equations can easily be determined [Irvine

81]. The requirement for anti-symmetric eigenmodes is:

) kL
sin 2— =0 (3.78)
M{l+e
with: k == w [ -—(-—0} ]“‘2
H
- [ﬁ G
H

The requirement for symmetric modes is:



-103-

KL, (KL, 4 KL
tanl — V- [ — e - .
an[g] [2]+x2 2]_0 (3.79)
w | E-
where: A% = [ = ]2 . A
H H

AD= (1 + eo )‘A

22 is proportional to the ratio of the elastic stiffness to the catenary
stiffness. For an infinite elastic stiffness (an imextemsible cable) the previous
derived results are found. For a cable with infinite catenary stiffness (a

perfectly extensible string) the symmetric string eigenmodes are found.

Equation (3.79) allows us to find the syrmetric eigenfrequencies for the
whole range of X. For an exiensive discussion of the properties of the
eigenmodes and eigenfrequencies with varying A see [Irvine 81} and [Veletsos
82]. We will limit ourselves to a plot of the eigenfrequencies versus X. (See
figure 3-8.) The points where the symmetric eigenfrequencies are equal to the

anti-symmetric eigenfrequencies are called modal cross-over points.

It is also interesting to look at the modal shapes with varying X The
transverse modal shapes for the first symmetric modes were plotted for various
values of A=, ({See figure 3-9)

The results obtained above are only valid for cables with end points on
the same horizontal line and with a shallow sag. The case of an inclined
cable, treated by Irvine approximately as an extension of the above
theory {Irvine 78] is better treated with the more general analysis of the next
section.

The theory presumes also that quasi-static stretch is present. If this 1z

not the case, tangential dvnamies will be excited and the above theory will not
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Figure 3-9: Symmetric Mode Shapes for a S

(Normal displacement: full line)
{10 X tangential displacement: dotted
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be valid. The elastic wave speed is:

E
— 1f2
b
p
and the transverse wave speed is:
M{l+e )
Cr = - ]1/2
H
therefore:
G | hid e
¢ E-A

el

The ratio H/EA is in genmeral very small, so that the effects are not
important until the 15 - 20 th mode. It is important to note that if we vary
A to smailer values, w _L/H should be simultaneously reduced to smaller values
ib order not to violate the quasi-static stretching condition. In other words.

for each geometric configuration, there is a minimal value of A% below which

the derivations above are not valid.

3.8.2 Orthogonality Condition

In the case of extensible cables, the four differentia} equations cannot be
reduced to one equation as in the case of inextensible cables. This makes the
analysis more difficult mathematically. The orthogonality condition for the

modes, though. can be proven easily.

We define H{s.r) as the matrix of the influence functions corresponding to
the static displacement components in the tangentia! and normal direction at 2
point s. due to unit forces in the normal and tangent direction at point r.

(His,r) is the Green function for the problem.)



-107-
Rosenthal proved the following reciprocity relations for cables under static
forces [Rosenthal 81], which can be seen as an application of Maxwell's
reciprocity principle.

[His,n] = [Hirs))”
or explicity:
H,,(sr) = H ({r;s)
Hy,(s.1) = Hyolrs)
Hyplsr) = Hy,lrs)
Hm(s,r) = H,{rss)
Using the above relations, it can be proved that the following

orthogonality condition holds: (see Appendix D)
1 .
f (m &€+ Mnn)do=0 i (2.80)
0

where: m: mass of the cable, per unit length
M: mass plus added mass of the cable per unit length
€ tangential components of the i th mode

n; normal components of the i th mode

Although the above result is well known for the dypamics of rigid
structures, it is believed that it has escaped the attention of previous
researchers as applied to cables. In the case of nom-extensible cables, the
previously derived orthogonality condition is identical with the one derived

above.
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3.8.3 Derivation of an Approximate Solution

In the case of an inextensible cable, we were able to use a transformation
of variables to reduce the governing equations to a single, fourth order
differential equation. = We could then solve the fourth order differential

equation using a perturbation expansion.

For an extensible cable, the equations cannot be reduced to a single,
higher order differential equation. We will therefore solve directly the set of
differential equations using perturbation techniques. The procedure is more
general in the sense that it can be applied to cases where the shape is not
dominated by the weight forces [Triantafyllou 83], although the mathematical

derivation is less elegant than in the case of an inextensible cable.

The assumptions to obtain the perturbation solution are in both cases
completely equivalent and indeed the inextensible results are also obtained as a

limiting case of the extensible perturbation theory.

To be able to use the perturbation expansions, two assumptions over the

magnitude of the coefficients are necessary.

The first assumption is that the ratio of the wave speed of the elastic
waves, versus the speed of the transverse waves jis large. This assumption is
valid for most cable applications where the material stretching is small

Indeed from chapter 1, we obtained as wave speeds:
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Cal = [ - }1/’-’ (3.81)
iy

- T G

¢ M(1l+e,)

therefore:

St _ [ EAl ]ue

Cy, To h

where: b = m/M

h is a quantity of order 1, therefore the ratio of the wave speed is of

the same ordér as the square root of the inverse of the static strain. Typically
the elastic wave speed will be at least 20 times higher than the transverse
one. The assumption can therefore be made that the solution consists of a
part which is fast oscillating in space (small wave length, transverse waves)
and a part which is slowly oscillating in space (large wave length, longitudinal

waves).

The second assumption is that the static quantities in the equation are
slowly varying in space compared to the transverse oscillation. In other words.
the variation of the static tension and curvature is small over a transverse
wave length. This assumption can be also stated as a requirement that the
variation over the cable length of the static quantities is small and/or that the
wave length of the transverse modes is small compared to the cable length.
One of these two conditions must be met. Fortunately, it turns out that even
for the first modes of oscillation the above conditions are generally satisfied.

(See also the discussion on asymptotic strings with variable tension.}
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Under the above conditions the four differential equations can be
separated asymptotically in two second order differential equations. One will
provide the transverse wave type of solution, wbich will be fast varying in
space, while the other differential equation will provide slow solutions in space,
which correspond to the elastic waves, or, in the limiting case of ipextensible
cables, to the instantaneous readjustement of the equilibrium position of the

cable.

The equations can be written in non-dimensional form as:

n

mL>w? e 4T wlL

s = — - —— o8 @
T, do T,
) d¢, dé, T, wL
- =T —-— — + —sing_ ¢,
. de do T .

(3.82)

where: T : representive static tension along the cable = constant
T, (o} static tension dT /doe = w Lsing
T(e}: T,/T, non-dimensional dynamic tension
o: non-dimensional Lagrangian coordinate
§: non-dimensional tangential displacement

7. non-dimensional normal displacement
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3.8.4 Fast Varying Solution

We will assume that & n are fast varying quantities, compared with the
static quantities. We denote by ¢ a quantity which is an order of magnitude
smaller than one. In the sequel we rewrite a]l variables in terms of new
quantities wich are of order 1, multiplied by appropriate powers of ¢ to
indicate their order of magnitude. ({In order not to confuse the reader with
different notations, E, 7 will still denote tangential and normal displacements,
but normalized to be of order 1.} For transverse waves, we know that the
tangential displacements are an order of magnitude smaller than the normal
displacements and, also that the dynamic tension is 2 second order effect.
This can be expressed as:

€ —~ % (o)
n — ¢iflo)
T — EQT(J]
¢ — €3lo)
These are the basic assumptions we make to obtain a solution of {3.82).

Also, we denote as:

o M L? W°
P = —
TC
w L
e =ca
TC
—2 = ¢ & (eo) {3.83)



Lo = ¢ ,e0)
do
TO[O') = fo(ea)
T

where now all the variables are expressed in terms of quantities of order
1 snd powers of ¢ [t can be easily verified by substitution, that the
governing equations, to second order, can be written as:
d — df
- ﬁ'=-——[T°-—~]+O(e2)
do deo
{3.84)
dé _ o
—_ = 600" + Of¢)
de
The first equation is a simple string equation with variable tension. The
unknown variable is fast varying compared to To and the non-dimensional
quantity 2" is a large quantity when we study the eigenmodes. Therefore, the
WKB solution previously discussed in this chapter can be used.  However.
reasonable care should be used because we want to determine both £ and 7y

with the same accuracy.

The reader will have noticed that in the case of a non-extensible cable
the second order terms were kept in the normal displacement expression.
Therefore, we proceed by deriving the equations in terms of E using the
relation:

1 df
8, do

The equation for the fast solution jn the tangential direction can then be

(3.85)

written to second order as:
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- - & 7, d
-3 E =T, — - 2T, = — + O(¢} (3.86)
de~ ¢, do

Verification of (3.86) can easily be obtained by substituting (3.85) m
{3.86). The solution to this problem can be obtained using the WKB method

for large parameters.

To leading order:

£ =3, (T exp(+ W) (3.87)

L
where; W = iﬁf _—i-{—; do
o (T )"
This can be rewritten. in terms of dimensional quantities, as:

1

W do ] (3.88)

do 9
£ = —D(TO)U" exp[ + 1wl f
do 0

Using the relation (3.84), we obtain the solution in the normal direction
as:
1 ] 7 W, sinc&o

BCRE [ By (T, M]”Q] |

n

o 1
exp[ +iwl .[0 W do {3.89)
This result is identical with the result for inextensible cables, which was
derived by applying the WKB method to the fourth order differential equation.
ie. the extensibility does not affect, to second order, the solution for

transverse waves,

When the curvature is zero, the solution is the same as the WKB

solution for a string with varying temsion. The asymptotic WKB solutions
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were found to be very accurate even if the assumption of slowly varying static
quantities is violated. The dynamic angle can be obtained as:
dn
¢, = > (3.90)

The validity of the assumed order of magnitude of the dynamic variables

can be checked using the obtzined solution.

3.8.5 Slowly Varying Solution
€. n are slowly warying quantities in space

We now assume that
The normal and tangential motions

{compared to the fast transverse waves),
are now ol the same order. The consistent perturbation assumption in this

Case are:
£ — €€ (o)

n — eileo)
T — 'f(w]
¢ — ¢ Bleo)

The governing equations to second order can be written in terms of

perturbation quantities:

-FF=T 3, + 0

_ (3.91)
NP
- [y = — 4+ Ofe~
§ o {e7)
where: h == m/M
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The set of the above equations can be written as a single differential

equation in terms of 7. by using the tangential compatibility relation.

The compatibility can be rewritten in terms of perturbation quantities as:

_ dE  _
Te=—-6,7 (3.92)
do

Using (3.91) and (3.92) the approximate constitutive equation for the slow

dypamics is obtained as:

¢ 7 o GE T .

— | — ] . hb‘;o[ 1 - — ] — = 0 + O (3.93)
do { 8o Pao’ Poo

We can rewrite the governing equation as:

o]

a . n "
5 —]+Q(°’)[—]=0 (3.94)
do” | ¢, b0
: m M w? L2
X = - - " ] » ——————
where: Qfo) o Dg [ EA ¢go
do,
¢Dﬂ =
do

The dynamic tension generated and the tangential displacement can be

found as:

(3.95)
=25 lx)

If (3.94) can be solved, (3.95) can provide the other dynamic quantities,

to obtain the complete slow solution.
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The solution of equation (3.94) is unfortunately not possible analytically
in the general case. The variation of the solution is of the same order as the
variation of Qo). Therefore a WKB type of solution cannot be used in this

Case.

The solution of equation (3.94) has been the subject of a major research
effort at M.LT, mainly by professor Triantafyllou. See [Triantafyllou 82bj,
[Triantafyllou 82¢], [Triantafyllou 83] and [Triantafyllou 84].

The governing quantity is:
. MuWEL?
Qo) =-h | ¢ - A {3.96)
The only coefficient that is varying along the length is the curvature ¢ .

The solution of (3.94), therefore, strongly depends on the analytical functional

form of the curvature.

The interesting features of the behavior of the slow equations are caused
by the opposing effect of elasticity and curvature in {3.96). The sign of Q can
be positive, negative or zero. The sign can even change at a point along the
cable.  This has a significant effect on the solution of the slow equation and

on the overall cable behavior.

We will briefly discuss the different forms the solution can take,
depending on the quantity Q{e). As mentioped in the introduction of

chapter 3, only the weight dominated case will be considered.

For the weight dominated case, we can express the curvature in terms of
the non-dimensional length wusing the following relation between static

guantities:
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d¢

—2=a 0052¢0

o
wOL

a = (3.97)
H

w L
tang, = tang, + —H- o

then ¢__ can be expressed as:

dé,

o wDL
= o cos” | atan{ tang, + — o } {3.98)
do H

where: ¢, is the static angle at the origin,
atan(x) denotes the inverse tangent function of x.
The curvature is a complicated function of o, so that additional

simplifications must be made to solve the governing slow equation analytically.
Large Sag Cable

In the case of a large sag cable, the elasticity effects are normally
negligible, compared to the curvature effects. This can be expressed as:
M o? L2
E-A

2
92, >> (3.99)

which implies that the cable behaves essentially as an inextensible cable.
(3.09) can, therefore, be used to determine whether the cable can be treated as
inextensible or not. Note that the assumption of inextensibility depends on
the frequency and for high frequencies the elasticity effects will be important.
If (3.99) is valid, the governing equation (3.94) becomes:

g

E;E[;;]’h¢aa"=° (3.100)
By changing the independent variable from o to ¢, we can proceed to

transform {3.100) into an equation expressed in terms of ¢D. We also use the
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compatibility relation for inextensible cables, writtep in the form:
d¢
dé,
and the slow equation can now be written in terms of £ as:

d%¢  d¢ /d¢ d
_._i..i“_/_ﬁf_.hg=o {3.101)

N

Using the fact that ¢, = @ cosquo for a catenary, the final form for

the slow solution for an inextensible cable is:

d* d¢
 + 2tang, — -h £ =0 {3.102)
do; dg,

The solution of this equation has already been given in (3.60)-(3.63). The
two independent solutions were obtained by series expansions around h = I,
where, fortunately, an approximate analytic solution to (3.102) can be found.
forh =1 §; = sing,
0 = {9, - 7/2)sind, + cosp,
1y = cosé,
Ny = (8, - 7/2)cosd,

The general solution, as already mentioned in paragraph 3.6.6.2 to
o1 - B3 is:
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h
£, = (t-h%) + bing, + - {b-1)eos?s, + O(b3)

g = (-b)os’o, + 33+hig, - g) sing, + cosd,] + OIl’)

(3.103)
n, = [h2 . h(h—l)sin¢°] cosé, + O(h%)

fgp = - 3¢059, [(Il-h)cosc,z&osiana0 - (3+h)(¢, - g)] + Ofh®)

The approach followed here provides, therefore, the same asymptotic
solution, as the one for an inextenmsible cable, which was obtained by expanding
a single fourth order governing equation. The agreement can be seen as a

confirmation of the validity of the perturbation assumptions.
Small Sag Cable

In the case of a small sag cable, the curvature in the cable will not vary
significantly and we can approximate it by a truncated Taylor series in terms
of ¢, To minimize the error in the approximation the expansion is made
around a point Dear the middle of the cable. (See Ngure 3-10). We define a
new origin of the Lagrangian coordinate at the point where the static angle is
equal to the inclination angle of the line. The new non-dimensional Lagrangian

coordinate is therefore defined as:

where ¢_ is the length coordinate of a point where ¢ = ¢ , and which can
be found from the static solution. The curvature e¢an now be expanded

around z = 0. The coefficients are only functions of the static quantities.
Bog = Bogq (1 + 27 + 252" + ) (3.104)

By using the static solution, we obtain:
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Figure 3-10: Definition of the New Lagrangian Coordinate
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a; = - 2a - cos¢a . singﬁa
a, = a? cos:"qbn . (3sin2¢aa - cos%a) {3.103)

where: o = w L/H

The quantity Q{o) can now be expressed in terms of z as:

0 ) M o L?
Q(z) = - b [ 62 {1 + 22z + (af + 22,00%) - ——— (3.106)
' EA
or explicitly:

M W L7

Qlz) = - h [ (oos 5

Y .
- 4o @7 c0SP, - sing_ z

+ a’ (&EG 3(10005%3 - sinr""qiba - 2cos4¢3122

+ Ofe3:%) (3.107)

we write this as: Qz) = Q, + Q;Z + nge {3.108)}
‘ ., Mw?i?
with: Qo =-h éga,a - _ETA—_
Q= 4¢h Po0a cos$, - sing,

PSRN 2, 2, 4.
Qz'— o h¢oo.a (10cos ¢, s @, 2cos70,)

We are now in a position to obtain approximate solutions for a small sag

cable. We will consider three different cases.

1. Q(z) is approximated as 2 constant.



This is equivalent to assuming a constant curvature along the cable, i

the static shape is parabolic. The governing equation (3.100) can be written

as:
d*n - M o? L2
~—-h[¢? -——|p=0 (3.109)
d2? % EA
d°y o .
> =
dz- °
where: G = ¢oo.a = 0{‘052%

The solution can be written as:

Mo} = exp { £ ( Q) o )
(3.110)
fo) = + b (- Q) exp { +(- Q) 0}
When the curvature is large compared to the elastic parameters, the
solution s exponential, otherwise it provides elastic waves. The behavior of
the slow solution can change from sinusoidal to exponential elastic waves,

depending on the magnitude of the curvature and the elasticity.

The cross-over phenomena are predicted accurately with the above theory.
Cross-over occurs when Q= 0, i
. MuwtL?
= —
E-A
For horizontal cables, the leading order approximation is correct to order

a2, which explains the good accuracy of the horizontal small sag theory.
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The leading order slow solution predicts a change of the type of solution

(exponential to sinusoidal) uniformly over the cable.
2. Q(z) is approximated as a linear function.

The solution can now be written in terms of Airy and Bairy functions.
(Airy functions of the first and second kind) for the normal displacement, and
their derivates for the tangential displacement [Triantafyliou 84]. The

parameter Q varies linearly with z only when the cable is inclined.

Qz) = Qo + le

Q
= Q [ : + — ]
Q
= Ql (Z - Zo)
Q
with: 2, = - —
2
The governing equation becomes:
& ! + Q. } i 0 {3.111)
—_— | g -2} — = .
d22 [ ¢oo ] : ° Ioc

the solutions in this case are:

(= Socfel, [ -1 (2 - 7) |
" Sool2)8 | Q1P ta - 20 ]

. (3.112)
=-h Q/* 4 [ QY3 (z - 2) ]

E(Z){ —.h QP .Bi [ QP (- 2) ]

This solution allows for a change from ar exponential to a sinusoidal

bebavior along the cable length. If the transition point lies within the cable
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span, the lower part behaves as an inextensible chain and the upper part as a
taut wire.
3. Q(z) is approximated as a quadratic function.
The slow solution can be expressed in terms of parabolic cylinder
functions for the normal displacement, and their derivatives for the tangential

displacement.

The governing equation is:

d . n " R
[ =]+ =@+ Qe+ Q) =0 (8113
dz" 000 oT )
This can be rewritten as:
d&* g ) n
n[—];(lﬂv +a)— =0 (3.114)
dv* o0 z-b o0
0
where: v =
bl
1

b, = —
QM

b, = - ©
2Q,

a—

(4] Q)N 4Q2]

The changes in sign are due to the use of an absolute value in the

'[Qo

expression for b.. The solution in this case is:
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= Gy, Wy(v.2)
n(z) {
Goo Wol¥.2)

& {

where W, , W, are the parabolic cylinder functions of the first kind for

Q < 0 and W, , W, are the parabolic cylinder functions of the second kind
for Q, > 0.

3.8.8 Total solution

Two fast varying solutions were derived in subsection 3.8.4, and two slow
solutions were derived in subsection 3.8.5. The total solution is obtained by a
linear combination of the four solutions that satisfies the boundary conditions.
The eigenfrequencies can be obtained by searching for the non-trivial solutions

of the homogeneous problem.

3.8.7 Discussion and Validation

When we let the elastic stiffness go to infinity, the solutions obtained for
extensible cables (both slow and fast) are identical to the results obtained from
the perturbation expansion of the fourth order differential equation obtained

for inelastie cables.

In the case of a shallow sag horizontal cable, by making the assumption

used in subsection 3.8.1 of constant temsion and quasi-static stretching, and by
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using the leading order approximation of the slow solution, the shallow sag
horizontal cable results are obtained [Irvine 74] [Triantafyllou 83]. The theory
is more general, however, because it also predicts the eigenfrequencies of the
elastic modes and the quasi-static stretching assumption need mnot be made.
For deep sag, horizontal cables the derived perturbation theory predicts
correctly the change of eigenfrequencies with increasing sag (see part II). The
predictions are valid for extensible, as well as for inextensible cables. The

theory is therefore more general than [Irvine 74} or [Saxon 53].

The shallow sag elastic cable theory has been applied by Irvine to
inclined cables [Irvine 78] The small sag approximation can be used
approximately to predict the symrmmetric modes as follows:

k.L

kaL k;L 4 3
tan[ ] [ } + = [ ] =0 (3.116)
2 2 e 2
M aye
with: k.=u[——-—]
H.
. w L o E-A
k:z[ ° ] o-cosi“"'a,{:2
H. H.
H
H- =
cosqj3

¢, = inclination angle between the cable chord
and the horizontal

Again. cross-over of the modes is predicted, as shown in figure 3-8, where
w has been replaced with w, and 22 with A2, For inclined cables, however,

the perturbation solution derived in previous sections should be used to reflect
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the basic assymmetry introduced in the problem. The perturbation solutions
predict hybrid mode formation and no cross-over phenomena. In figure 3-11
the eigenfrequencies are plotted versus AZ. The inclination angle is 30° and
w,L/He = 0.5. The eigenfrequencies are not crossing. The curve of the first
mode is, at bigh values of A2, the coptinuation of the curve of the second
mode, at low values of A2, and the second mode is, at high values of A7, the
continuation of the curve of the first mode, at low values of »s. Figure 3-8
can be seen as the limit case of figure 3-11, for inclination angle 0° and/or
wL/H, = 0, and can still be used to predict the eigenfrequencies accurately
for moderately small values of w L/H. and ¢, except in the transition region.
The size of the transition region increases with increasing values of w L/H,
and ¢, It is interesting to note that for low values of A No curves were
plotted. At such a low value of J\E, the elastic strain in the cable becomes
large, and cannot exist in real cables. Cut-off was selected at the point where
the elastic wave speed is 10 times the transverse wave speed. This s
approximately the minimal value for steel cables and chains wsed in mooring

applications.

In figure 3-12 the shape of the first two modes for various values of A3
have been plotted. The symmetric8 and anti-symmetric modes are changing
over to hybrid modes in the trapsition region, and for high values of A7 to the
anti-symmetric and symmetric mode of an inelastic chain. See

also [Triantafyllou 84}.

The application of numerical techniques to study the same phenomena

8The reference to symmetric and anti-symmetric modes is of course approximate. The
inclination of the cable destroys the fundamental symmetry of the problem.
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Figure 3-11: Eigenfrequencies of an Inclined Cable

(6, = 30°, w L/H, = 05)



=

>
#42

A

*12

10

Figure 3-12: Formation of Hybrid Modes

(¢, = 30, w,L/He = 0.5)
(Normal displacement: solid line)
(10 X tangential displacement: dotted line)
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conlirms the existence of hybrid modes and the non-crossing of the modes {see
part II). Yamaguchi [Yamaguchi 79] used Galerkin's method to solve for the
eigenmodes. A cartesian description of the problem is used and the expansions
are made using sinusoidal functions in space. The hybrid modes and the non-

crossing of the modes are also obtained.

3.9 Numerical Solution of the Linearised Problem

The governing equations {3.1), which were solved using asymptotic
methods, can also be solved wusing numerical methods. The governing
equations written in the Fourier domain are (The solution method described

here is also valid for cables which are subject to current forces):

o dT1 d¢o

-mwp=-—-T — ¢
ds ds
“Muwlq=T, g + T, 2o + T ¢ (3.11%)
ds ds ds

dp d¢o
—_— —_— el
ds ds
dq de
—+p— =l + e}
ds s o)

The problem is reduced to a set of four ordinary differential equations

with two boundary conditions at each end.

Dilferent methods can be used to solve the problem numerically. Using

the linearity of the equations, shooting techniques can be used to reduce it to
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an initial value problem, which can be solved by classical integration
techniques.
Another possible method is the use of implicit differences, to reduce the
problem to a set of linear algebraic equations. Unfortunately, when a realistic

grid length is used, the number of equations becomes very large.

An explicit centered difference scheme was selected to solve this problem.
The centered difference scheme allows a transfer matrix formulation of the
problem. The boundary conditions can easily be handled in this

formulation [Keller 69].

The linearized dynamic equations are rewritten in matrix form.

rdT'l— o . 1 B T
— 0 T, d¢ /ds - mw” 0 T,
ds
d¢, d¢, dT_/ds 1 M q] ,
— - - =1 ‘
ds T ds T, T, :
d 1 do
p 0 0 ° p
ds EA ds
dq do
— 0 1+e_ ° 0 q

| ds A ds

We rewrite this as:

dy
— = Als) ¥{s) (3.118)
ds '

with: yX(s) = (T, ¢, P q}

Using centered differences, the following difference scheme is obtained:



-132-

As. .
i, I+1 1
Yier = |I- Y Alsyyq) [I +
= B y.

AT

A(Si} ¥
2

(3.119)

Due to the fact that the static variables are slowly changing with respect

to the spatial coordinate, the difference scheme will give acceptable results

except when the wave length becomes of the same order as the grid length.

The overall error is O{As?). To find the expression relating the two ends, we

can write:
i B

\ = Y

] (i=1 1) 1
We write:

B-1 01 @5

I B =

=t Qoy Q22

Il motions are imposed at the

relation s obtlained:

Tmp
otop a 11
plop a2
qt-op [
Therefore:
ptop -1 Tlop
Q9 2N

qtop ¢lop

(3.120)

(3.121)

upper end of the cable, the fJollowing

Tbot

o)z Pbot
Qp9 0
0

(3.122
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This provides a direct relation between the imposed motions at the top
and the unknown dynamic angle and temsion at the top. The matrices 0,

These matrices

) : n-1
and a,, are obtained from the matrix multiplication IT B,

i=1

can be calculated explicitly and they are functions of the static quantities, the

frequency and the grid length.

The difference scheme can also be used to calculate the dynamie variables
along the cable. When the displacements and the dymamic tension and angle
at the top are known, the problem is an initial value problem which can be

integrated directly.

The eigenfrequencies for the cable can be found by imposing zero motion
boundary conditions at the top, and by searching for the frequencies which
give the governing equations a non-trivial solution.  This can be written

according to (3.122} as:
Det [ ay (W) = 0 (3.123)

A search of the roots of (3.123) is done by a root-finding method which

locates the eigenfrequencies within a desired accuracy.
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Chapter 4

NON-LINEAR STRINGS

4.1 Introduction

The study of non-linear strings has attracted since the 1940's a great
deal of attention. The linear string equations are valid only for small motions.
while, when the motions become large, the dynamic tension generated by the
motion must be included in the governing equations. The popularity of the
subject is mainly due to the fact that the governing equations can be solved

using perturbation analysis.

Carrier formulated the equations of motion for a pon-linear string and
solved the problem by means of 2 perturbation expansion in terms of the
amplitude of motion. See [Carrier 45] and [Carrier 49]. Oplinger [Oplinger 60]
studied the planar motion of a non-linear string using the method of
separation of variables. He studied the motions of a string subject to an
imposed motion of the boundary and he derived the response in the middle of
the string. The response curves he obtained both analytically and
experimentally, show a hardening spring type of effect.

In figure 4-1 the response of a non-linear string subject to a forced

motion of one of its ends is shown. The response of the midpoint is given as

a function of the ratio of the frequency to the first resonance frequency.
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TR VAN
101

Taken {rom [Oplinger 60}

Figure 4-1: Response Curve for a Non-Linear String
subject to Boundary Excitation



-139-
The parameter 7 governs completely the non-linearity of the system. 71 i»
given by:
EA (Ampl)

. 1.1
T, 2L t

T =

The frequency response curve is bent to the right causing the resonance
frequencies to shift to higher frequencies as the amplitude increases. True
resopance is never obtained. Above a certain level, the response is multivalued
and depends on how the exciting frequency was varied. Jump phenomeni can
occur, i.e. a sudden reduction in the amplitude of the response for a small
increase in the frequency of excitation. FPoint 2 on the curve is an unstable
point and cannot be achieved. When the excitation frequency is decreased an

inverse jump (i.e. a sudden increase in amplitude] occurs.

Oplinger conducted also experiments to verify his results. The agreement
of theory and experiments is remarkable. He also observed the spontaneous

occurance of out-of-plane motion for high amplitudes.

The instabilities of the high-amplitude motion in a plane, and the
resulting whirling motion, has been the focus of a major research effort. For
a good review on this subject. see [Nayfeh 79].

Major contributions to the out-of-plane whirling motions can be found
in [Murthy 65), [Miles 63], [Narasimha 68] and [Dickey 80]. Narasimha has
also made in his paper an interesting derivation of the string equatiun.
expressed in Eulerian coordinates.

Prediction of the accurate location of the jump phenomena can only be

done when damping is included in the model.  Anand {Anand 66] included

viscous damping. A fluid drag type of damping was included by Hsu in hi-
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study of parametric instabilities of a hanging string [Hsu 75]. This paper is
particularly interesting as far as this study is concerned, because he uses the

mode shapes directly in his solution method.

More recently, Richard and Anand studied the resonance phenomena
caused by narrow band excitation [Richard 83]. Tagata [Tagata 83] studies

the interesting subject of parametric excitation of a string of varying length.

In this work, we will only be concerned with the analysis of the in-plane
motton of non-linear strings under excitation of one boundary. The main
objective of the study is to illustrate the use of modal expansions to solve a
non-linear problem. It should therefore not be considered as an in depth

analysis of the subject.

4.2 Governing Equations

The string equation can be written in the transverse direction as:

&q dq dq

a3 aq
M +bd—-—|-~[=—[T(x.t)-——] (4.2)
ox Ix

e ot at
q 1s the motion in the transverse direction, and x is the cartesian
coordinate along the string in rest. In the above equation use was made of
the fact that:
ax
— =1 (4.3)
os

A quadratic damping of the Morison type was introduced, where by can

be set in the form:

= =-p CD D {41.4)

w
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It is convenient for further manipulation to write (4.2} as:

&'y by dn By 1 3 an
T2 S o [Ty | (151
dt- Mot It ML- oo de

where: 7 the non-dimensional displacement g/L

o the non-dimensional length s/L

This equation is subject to boundary conditions:

n(0) = 0

(1) == F(t) (4.6

A stress-strain relation for moderately large transverse displacements can
be formulated as:

T = T (o) + EAe
The compatibility relation, derived in chapter 1, can be written as:

J€ 1 o ., 01 1 -
e=5;+2(1+e0){ 5]-+[5;]} e

Even for moderately large motions, the tangential motion is an order of
magnitude smaller than the transverse motion. Therefore:

o€ 1, On
i =

e =

]2 (4.8)

The strain can be assumed to be constant over the string length. This
assumption is valid for excitation frequencies well below the first elastic

eigenfrequency. Therefore:

1

e=[ e do
0
1

1
= u(l} - u(0) + - [qi[cr} do {1.9)
279
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The governing equation can, therefore, be written as:

8% bd oy Iy 1 @ an
St = " L To(a) - ]
gt Mat ot ML* do do
EA 3%
e — (410
ML*  do*

in which e is given by (4.8). This governing equation is subject to the
boundary conditions {4.6). In equation {(4.10) the static tension is allowed to
vary along the length, which makes it more general than the case of a string

under constant tension.

4.3 Expansions in Orthogonal Functions

We propose to expand the solution of the problem in the following form:
n

flot) = u, (@) 1) + ) 0 (0) G () (4.1
=1

where: Mo (¢); the quasi-static solution, to take care of the
inhomogeneous boundary conditions.

; (¢)}: the modes, obtained from the linear
eigenvalue problem with homogeneous
boundary conditions.

The boundary condition is directly taken care of by introducing the
quasi-static solution. The main advantage of using this technique is that for

low [requency excitation only a very limited number of modes needs to be

included.
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4.4 The Quasi-Static Problem

The quasi-static problem consists of finding the solution to the following

equation:
0 n
— 1 T — | =0 112
do [ o (©) do ] ! )
Mo) =0 n(l) =1

The solution to this problem can be written as:

¢ 1
n, (0) = C, f do (1.13)
o T, (o}

11 1
where: Cl = { [ do }
0T, (0)

For a string under constant tension the solution is simply:

n,lo) =20

4.5 The Eigenproblem

The linear eigenproblem associated with (4.10} can also be solved easily.

The case of a string with varying static tension is a classical Sturm-Liouville

problem:
1 d on 2
MLQE;[TO (0)5;] =-w'Dy {4.14)
n(0) = 0 n(1) = 0

The eigenfunctions can be obtained using analytical, perturbation or

numerical methods. The WICB method, as a solution to this problem. has
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been described in detail in chapter 3. The modes are orthogonal, with the
following orthogonality condition: (r;;i with i720 are the eigenmodes.)

1
f M n, (o) n, (0) do = 0 ] (4.15]
0

The eigenmodes are chosen to be orthonormal:

M n3o) do = 1 (4.16)

4.6 Time Integration

The expansion (4.11) can be substituted in {4.10) where all of the space

varying functions are known functions.

Substitution gives:

" L] 1] b 3!7 . n 1
d
n [+ r;,C,+—|-|[ql'+ r).C‘]
{4.17]
E.A

n
=-2 WG+

=1 ML?

e [ L/ f(t) + Zn: W00 Ci (t) ]

i=1
Multiplving with qu and integrating over the domain gives the

governing equation:
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" n L] ]
C. +b fl—[n-n-doc-
i dZ 0 at i h i

=1

n o E-A 1
+Z [‘sji”f+Lz°f’?jo"iod”]Ci
1==1 Q

1 " I 9n
=-f0Mqonjdaf-bj;)|a|qoqjdaf

E-A 1
- _I‘? e _/;) qOU ql“ dd r {418,

This sommation will be taken over a finite number n, so that a set of n
non-linear differential equations with n unknown functions Cj 18 obtained.
Several of the terms in the expansion are time varying. These are the

coefficients involving dn/3t and e, which are unknown.

Among the time integration schemes, which can be used to integrate
(4.18) are: the explicit scheme, and the implicit scheme together with some
iteration method.  This will be discussed in great detail in chapter 5.
Fortunately (4.18) has the characteristic that if the non-linearities are not
dominant. the n equations are very weakly coupled. Even ignoring completely

the coupling can lead to good practical results [Hsu 75].

In (4.18) integration by parts was used to reduce the order of spatial
derivatives by one. This is a very tmportant feature numericallv and will be

used in the more general cable dynamic problem extensively.

When a string with constant tension is simulated in time, the modes are
simply sinuoidal functions and some of the cross-coupling terms between the
equations disappear. An example of time simulation for a string with constant

tension is discussed in part Il
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Chapter 5

NON-LINEAR DYNAMICS
USING GALERKIN’S METHOD

5.1 Introduction

The advantages of using modal decomposition in linear dvnamic analvsis
of structures are well documented [Clough 75 and [Bathe 82. The dvaamic
equations of motion become uncoupled and, what is even more important. in
many cases the number of degrees of freedom can be reduced drastically.

without losing accuracy.

Modal expansions in the analysis of non-linear dynamics is much less
developed.  Some structural examples have been solved; buckling problems
[Nickell 78], contact problems and earthquake excitation {Bathe 811 The
results were very encouraging. Although the problems considered were highly

non-linear, a very small number of modes gave reasonable accuracy.

In riser dynamics Galerkin’s method has been used by several researchers.
Kirk [Kirk 79] assumes the deflection as 2 series of  sinusoids,
Dareing [Dareing 79] solved the riser problem using a modal decomposition and
he found that under regular wave excitation few modes are needed. To
uncouple the equations he used a uniform equivalent damping over the riser.
The full, non-linear drag term was used in the modal expansion of
Y. C. Kim [Kim 83}, who investigated, also, the effect of second order
geometric terms.  Fast convergence of the modal expansion is reported.

Applications of modal expansions in pon-linear strings have been described in
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chapter 4.

The use of modal analysis in linearised, small sag cable dynamics was
developed by Irvine [Irvine 76]. He shows the influence of the ratio of elastic
and geometric stiffness ot the modal dynamic tension. See also [Veletsos 82].
Hagedorn [Hagedorn 80] includes non-linearities up to third order in the modal
expansions of a small sag cable. The resulting equations were solved using a
perturbation solution. In a very interesting paper, written in Japanese and
therefore not well known in this continent, Yamaguchi [Yamaguchi 79] uses
Galerkin's method with sinusoidal lunctions to solve the gemeral linear cable
problem. He uses this method to calculate eigenfrequencies and good agreement
with previous results 15 reported. The use of modal expansion for a cable
without using the small sag approximation has, to the author's knowledge, not

been reported.

5.2 Galerkin's Method

The Galerkin method will be explained using a simple one-dimensions}
example, although the concept can be applied to problems in several
dimensions. For more details, see [Gotlieb 77). The problem considered is a

mixed initial boundary value problem.

du

— = L{x,t) u{x,t) + f(x.t)

ot

ufx;,t) = 0 ulx,t) = 0 t >0

u(x,0) = g(x) X; < x < x,

The operator L is a linear differential operator in x. Oualy the

homogeneous problem is considered, hecause the inhomogeneous problem can be
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rewritten as a homogeneous one by adding an appropriate, but otherwise

arbitrary function, satisfying the inhomogeneous boundary conditions.

The solution is expanded in the form of a truncated series:
n
u (ot) = 2 3 () 6 (%)
1=0
where qbi are assumed to be linearly independent space funetions,
satisfying the homogeneous boundary conditions.
The residual error, by substituting the truncated series in the govermng
equation, is:
6un
R =—- L, -f
ot
Several methods can be used to minimize this error over the solution
domain. In Galerkin's method the error is weighted with the trial functions
and the averaged value is required to be 0. This gives:
n aa n
Z f¢. ¢.dx—'=z f¢.L¢.dxa‘+f¢.fdx
) 4 1 i ) ]
j=1.n
Several types of functions can be used in the expansions. If the

eigenfunctions of the problem are used, the above equations become uncoupled.

resulting in a significant simplification of the time integration scheme.
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5.3 Linearised Dynamics using Modal Expansions

The modal expansions can be applied directly to the linearised dynamic
equations.  The external forces can be of arbitrary form and thevy are a
function of time. Because the static forces are in equilibrium (see chapter 2)

only dynamic forces must be considered. The governing dynamic equations are:

AL
m — = - —_— + it} (1 + e
at~ ds ® g ! '
y ¥q e, L r %
- = — + — ¢, + — + F_ [t} (1 + e)
ot ds D7 as ! ® 9 “ (
dp 03, (5.1)
— - q — e
ds ds !
2 + i ¢, (1+e )
— p— = +e
ds fs : 0
These equations are supplemented with the linear tension-strain relation:
T,=E - -A-e (5.2}

To be able to use modal expansions, it is more convenient to eliminate

the dynamic tension out of the refations (5.1} and (5.2):



&p 8 ap  O¢
m— - — E—Al—-q—")]

= Os Js os

pr, e L2 By or
® 8s 14e @5 $ : °)

9*q 09 dp 8¢ OT 1 8 3o {5.3)
Mt Pep A DDy 2 — (o)

- Os ds 05 ds 1+e s ds

d 1  0q

¢
-T, — — + p—)| = F_ (th1 +
'035[1+e'0 [('?s pas ] n{]( °)

To have a complete formulation of the dynamic problem, four boundary
conditions are needed. In this work we will assume imposed top motions and

a fixed end at the bottom. The boundary conditions are then:

p(0) = 0 p(L) = I[t)
{5.4)
q(0) = 0 q(l) = glt)
we expand the solutions in the following form:
plst) = D ¢ (1) B (s)
=)
B (5.9)

gfst) = 9 ¢ (1) g (s)

i=0
where the functions in (5.5) must be determined to satisfy the governing

equations (5.3} and the boundary conditions (5.4)-

5.3.1 Solution of the Linearised Quasi-Static Problem

The boundary conditions (5.4) will be satisfied by introducing the quask-

static solutions in the proposed expansions. The quasi-static solutions are
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obtained by neglecting the inertia and external forces in {5.1) or (5.3) and

solving the resulting eguations:

aT, a¢,
0=—L.T, %4

ds Os

¢ oT a
0=—2T,+—2¢ +T, —

Js ds J

1 dq do,

8, = [—=+0» ] (5.6)

1+e Os Os

dp é'qbo
e, = —-q—

Js ds
T, =E-A.¢

with boundary conditions:

p(0) = 0 p(lL) = fit)
q(0) = 0 qfL} = gft)

We can separate the time and space dependence by writing the solutions,

making use of the linearity, in the following form:
Pos = {1t) pggy (3) + g(t) pygo (5)
G = flt) Qgqy (8) + (1) quey (s}

g must satisfy:

Pgs1 0) == 0 Pgs1 (L) =1

qqsl (0) =0 qqsl u"} =0
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and Pgs2 + Ygs2 must satisfy:

Pgs2 (0) =0 Pgso (L}y=0

Qgs2 (0) =0 Qs Ly =1

The quantities P..qg above are the solution to the very slow motion of

a cable forced to move with unit amplitude in the tangential and normal
direction, respectively. ~ They are the zero frequency limit ol the linear
dynamic problem. The solution can be obtained by using methods similar to
the ones described in chapter 3, because the equations are in the same form as
the equations providing the mode shapes. In this work, numerical central

differences were used to obtain quasi-static solutions.

We can now try expansions of the solutions in the following form:

pls.t) = f(t) peyy (8) + 8lt) Pgp (81 + 2 Ci (1) 2 (8)

i=1

n
gsit) = f(t) ag (8) + BU) G ) + 2, €5 (1) g (8

1=1
where p, {s) , q; (s} are the components of the i th mode with fixed end

conditions.

5.3.2 Solution of the Eigenvalue Problem

The eigenmodes of the cable are obtained by solving the following

eigenvalue problem.
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d ap ¢
-mefp-—[E - A(=-q=)
S ds s
¢ 1 dq a¢
+ T, — . —+p—) =0
ds l+e, s s
a9 dp D¢ 8T ] dq 3¢
Mot q- 2 EA(=-q—)-—2. -[—+p—°
ds ds ds ds 14e, ds ds
o) 1 dq a¢
-T, — ] —(—+p—)| =0
Os I+e, fs 05

with the following boundary conditions:
P(O) = q(0) =0 p(l) = q(L) = 0

Again, the methods described in chapter 3 can be used to solve {hic
problem.  The results of the analysis are the eigenfrequencies and the
eigenmodes P, . 9q; 8s well as the modal dynamic tension and the modal

dynamic angle, T, . @, respectively.

The eigenmodes are orthogonal to each other, in the following form:

L
f(m P+ Maq Jds =0 i (5.10)
0
In the sequel, the modes are also assumed to be normalised so that:

L
/(m p? + M q? ) ds =1 (5.11)
0

5.3.3 Substitution in the Solution

The proposed solution (3.8)
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pis.t) = [(t) Py (8) + 8(t) Pogy (8} + Yo ¢ op )

=1

qlsth = 1) Qey () + &16) Qg () + 2, € 1t) 4 fs)

i=1
can pow be substituted in (5.3}, taking into account the quasi-static

equations and the eigenvalue equations:

[ L) L1} n an n
m [ l'pqSl + BPge2 + E PG ] + Z m w p; C; == F (1 + e}
i=1 i=1
(5.12)
[ 13 1 o [ L) L
M [ fage + 890 + 2 4Ci ] + 3 Mg =F +e
i=1 =1

Multiplying the first equation in (5.12} with p, and the second equation

in (5.12) with g and integrating over the length, we obtain:

(1] 2 . ' (1] [1] )
C + o = F%-Af-8¢ (5.13)

ci
where: 7 = f(Ft p, + Foq ) (1 + e) ds

A= f(“‘ Pgst Pi + M G5y 9 ) d

B'=f(mpqsepi+qus,2qi3d5

1
To make the description more complete, we introduce a linear modal

damping. The equations (5.13) can then be written in its final form as

[ 1] I‘ 2 _-' (1] H .
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5.4 Time Integration

In this analysis Newmark’s method was selected. It is an implicit time
integration scheme which is unconditionally stable. In the case of a modal
description, no additional computational effort is needed compared with an
explicit scheme, so that it is unquestionably preferable to use an implicit
scheme. Newmark's method was developed for direct time integration of very
large systems of linear equations, where it gives excellent results. {see [Bathe
82])

The Newmark integration scheme evaluates the equilibrium equations at a

time £ + At as follows:

Oy = iy 4 [ll -8 %+ 8§ | Ay

. . " (5.15)
tAly =ty oty AL 4+ [(1/2 - o} & + a " ] At?

where o and & are parameters which can be selected to give an optimal

combination of accuracy and stability. Writing the velocity and acceleration in

terms of displacement, we obtain, using the conventions in [Bathe 82}:

1
anmcnﬁt2
§
a, = —
1 alt
1
a.—,:“"——
- oAt
1
a3=——--l



&
a, = — - 1
&
At 6
ae = — (= - 2]
s 2 «
ag = At (1-6}
2. = dAL
t+at, a, ( AL, | by ) - 2, ty - a, ty
AL . “ (5.16)
t+AL, t t t
X == -a;X -3 X-2a; X
Evaluation of the equations of motjon at time t+At gives:
t+Ate LAty 2 t+ALes
G, + 2§, w; C, + o C,
— ';+dt}'l . t+.‘3tr Al . t+Atg B‘ (.—)17)
Substitution of (5.16) in {5.17) gives:
((ag + a, 26 w; + Wi} A,
. t ¥ te
+ 26 w; (a) 'C; + a3, 'Cj + 35 °C)
+ Hm}rs | tHAY "qi - t+Atg Bi (5.18)

When the above equations (5.18) are solved for each time step, a time
history of the modal displacements is obtained. A complete solution of the

linearised cable problem can be constructed as follows:
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plst) = fit) pyy (sh+ BIU) P (8) + D p; () C; (1)

1=l

qls.t) = f(t) quqy (s) + £(t) qup (8) + 2 q (5) C; (1)
1=

Byfst) = Mt} @gg) () + &(t) Py (5) + D & (s) C; (©) (5.19)

=1

Ty(st) = f{t) Tog (5) + glt) Top () + 3 T, () G (1)

i==]
where p, . q , ¢, , T, are the modal components of the tangential
displacement, normal displacement, dypamic angle and dynamic tension

respectively.

The Newmark integration scheme is unconditionally stable when 6 > 0.5
and o > 0.25(6+0.5)°, which means that the solution does not grow without
bound for any initial condition and for any At. Newmark introduced his
method originally with 4 = 0.5 and a = 0.25. This method is called the

constant average acceleration method (also trapezoidal rule). {See figure 5-1)

It can be shown [Bathe 82] that using this selection, an undamped
system shows no amplitude decay and only a phase shift due to time
integration errors appears, while no pumerical damping is introduced by the
scheme. If numerical damping is desired, the value of § must be taken greater
than 0.5 and the value of a should be varied accordingly. Due to its

favorable characteristics, the constant average acceleration scheme will be used.

The following relations are obtained for {5.16) using # = 0.5 and o =—

0.25:
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4 x
|

ot time

Figure 5-1: Newmark Constant Acceleration Scheme [Bathe 82]
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Aty g osaly! (FA L Y ). (0254t I - &

. , “ (5.20)
CHOLy o by 4+ 0.5AL ('x + A )

5.5 Non-Linear External Forces

5.5.1 Description

A full description of all the external forces was given in chapter 1. In
the linear problem only the dynamic component of these forces should be

included.

The ounly important force for most applications is the hydrodynamic
loading. In this work, we use, apart from the added mass force, a quadratic
drag force for the hydrodynamic loading, as described in chapter 1. Other
forms of loading can easily be implemented. The dynamic component of the

external force terms can be writlen as:
Fall4e) = 05 o, Cp(Re) D (U cosp - v,) U cos¢ - v,| (1+e/2)
- 05 p, CylRe) D U - cosg | U - cosg  {(1+e/2 )
(5.21)
Fyall+e) = 05 p Cpa(Re} D, (U sing + v ){U sing + v |(1+e/2)

+ 05 p, Cy(Re) D, U - sing | U - sing_ |(14e/2)

5.5.2 Time Integration in the Presence of a Non-Linear Force

The equation of motion, using Newmark's method has been written as:
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a 2y t+At
(ao+al..Eiwi+u,i] C,

t t" t‘ll
=(aOCi+a.;,Ci+aaci)
+ 26 w; (3 'C, + a, 'C. + a ‘C. )
t+AL L+ ALY t+Ate

In the case of the hydrodynamic drag force, the modal force is given by:

L
HAE = [ (FOW by + gy g ) L+ t+ate) ds (5.2
0

3]
]
| ]

The forces are not known at time t+At, because they depend in a highly
non-linear way on the relative velocities, therefore some approximation of the

hydrodynamic drag force is required.
- L A - - -
Ay = f (A p, 4 VHOF g ) (1 + €) ds (5.23)
0
Several methods c¢an be used to make estimations. The easiest
approximation is simply to use the forces calculated at the previous time step.

Therefore:
) L
= fo (‘Fyo Pi + T & ) [+ ) 3 (5.21)

Improvements on this first estimation can be achieved by using an

iteration procedure to approximate the modal forces.

The complete governing equations for the modal components Wwith

equilibrium iterations can be written as:
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2 t+AL~k
(3 + ) 26w + o ) TG

I

( 2, tCi + a, tCi + 2y tCi)

+ QEi w; (a1 tCi + a, tCi + ag tCi )

+ t+AI.3|;k-1_ t+Atg A: t+at B, {5.25)

L

with: F¥! = /; (FAF py + AP 4 ) (1 + A ds

L
with: F? = f(‘th p, + Fgp 4 ) (1 + %) ds
o

5.5.3 Discussion

Equation (5.25) describes completely the dynamics of a two-dimensional
cable with a non-linear time varying force. The only restriction is the
assumption of small motions, which means that the dynamic tension must be

small compared to the static tension. The dypamic angle must also be small.

The complete solution procedure is described in table 3-I.  The major
advantage of the method is that a minimal number of modal components can

be selected to represent the cable motions accurately.

It is the author’s opinion that this procedure can also be used to solve
the inverse problem. Knowing the cable motions, study the hydrodynamic
forces in their modal components. This could enable uvs to make some
progress in the understanding of the hydrodynamic loading of flexible

structures.
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Solution Method

1. Evaluation of the Static Equilibrium

to

_ Calculation of quasi-static solution due to top motion

{a

_Caleulation of eigenfrequencies and modes

4. Time simulation
For each step ;
Evaluation of the force
Iterative Evaluation of the modal force
Procedure Evaluation of the modal components
Evaluation of the displacements.

Table 5I: Time simulation using Modal Expansion
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5.6 Non-Linear Governing equations

The f{ull non-linear equations of motion were derived in detail in
chapter 2. The two dimensional equations of motion are written in a
coordinate system fixed with respect to the equilibrium state. 1In our analvsis
we selected the static equilibrium as the reference coordinate of the system.

{See figure 5-2)

p: tangential coordinate on static configuration
q: normal coordinate on static configuration

¢,: angle between tangent on dynamic and static configuration

5.6.1 Dynamic Equations

The dynamic equilibrium, as outlined in chapter 2, can be used along the

p and q directions to find the equations:

&p AT 8 n
m Et—ﬁ- = a - cos¢l -T 5; - S]D{bl -+ Zc' Fext,p.i(l+e]
=
(5.26)
0°q T 8¢ n
m a—t—g = g - sing, + T :3‘; - cosg, + ; Fext,q,i(1+e)
=
These can be rewritten as:
Fp 8 3, n
m a—t-:; == 5; (Teosgy) - T -B;_o sing, + z{:} Fem’p‘i(l+e]
1=
(5.27)
8q 8 3¢ p
m F = g (’I‘sincﬁl] + T go cosg, + z% Fen‘q‘i(1+e)
jues

The external forces on the cable consist of the following components

- Gravity and buoyancy forces
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Dynamic Configuration

Static Conliguration

e

NNy . i —
////////.f///////f'//z”/f/f/{f’j//

Figure 5-2: Coordinate System (p,q)
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- The added mass force
- The non-linear drag force
Gravity and buoyancy forces

The gravity and buoyaney forces act in the vertical direction when the
effective tension concept is used. {See chapter 2) The net force acting on the

cable is given by:

{1+e) = - w_ - sing_

Fext,p ]

(5.28)
Fen‘q {(1+e} = - w_ - cosg,

where w_ is the net weight
The added mass force

The added mass force as derived in chapter 2, can be written in the p

and q directions as:

ap , 9% ,
Fext,p {14e]) = - m, ;3—{;,_- ¢ sintg, - 6? - cos@ - sm¢»l
ap : acj'l aq . a2 3¢1
+ — - cos¢, - sing; - — + — - sin"g, - —
ot 3t at ot
(5.29)
8%p . 3%q )
Fext,q (1+¢) = - m, | - 'at—z © sing, - cos¢, + ﬁ - cos B,
dp . 9¢, 99 06,
- — - c0s’P, - —= - — - sing,; - cosP; —
ot ot ot ot

The added mass force, written in the reference coordinate system, is a
complicated nop-linear function of velocities, accelerations and angular

orientation. This 1s mainly due to the appearance of Coriolis and centripetal
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terms. For small dynamic angles this force will be reduced to a normal
component.
8%q

(14€) = - m, — (5.30)

F,
2ext.q a 3t2

For a large dynamic angle, we rewrite the normal added mass force term

as follows:
9* % 0%q
erxt’q {1+e) = -m, Et_é - m,|- ﬁ-smqbl—cosc&l + 6_t2- (cos=¢, - 1)
op , 0¢; dq 39, (5.31)
- =S e - — sing, -cosg -—— ]
at gt ot

The added mass can be considered to be the sum of a linear term in the
q direction plus correction terms. The linear term can be included in the

inertia term.

The added mass term is small compared with the mass term for chains
and wires, therefore the influence of the additional added mass terms on the

motion is believed to be minimal (see [Barr 74]).
The Non-linear Drag Force

The drag force, as described in chapter 1, can be written in the {p.ql

coordinate system as:

Fext,p (1+e) = 0.5 pw CDD (Re] Do (US]H¢ + Vn ) | LTSiné + “D l
(14+e/2) - sing,
+ 0.5 p,, Cpy (Re) D, {Ucoso - v,) [Ucosé - v

(14+e/2} - cos@,
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(5.32)
Fouqllte) = - 050, Cp (Re) D (U sing + v ) |Using + v,

ext.q
(1+e/2) - cos¢,
+ 05 p, Cp, (Re) D (U cosg - v} [Ucosg - v |
{1+e/2) - sing,

where: ¢ = ¢0 + tbl

ap dq
v, = — cos¢; + — - sing,
ot ot
dp dq
v, =-—- sinda] + — - cos¢,
at at

5.6.2 The Compatibility Relations

The non-linear compatibility relations were derived in chapter 2 and are

given as:

. dp
{(1+e} cosp, = (1+e, ) + [ ; - qp,,

(5.33)

(1+e) sing, = [ g + pd,, ]
5.6.3 Summary

The equations in 5.6.1 and 5.6.2 give a complete description of the full
non-linear two dimensional dynamic problem, with the external forces described
in 5.6.1 A constitutive law, relating the strain and the tension and the

boundary conditions must be added to make the formulation complete.
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5.7 Newton-Raphson Method

The equations of motion of a cable are described by a set of non-linear
partial differential equations of the hyperbolic type. In this work an
incremental linearised deseription of the pon-linear equations is used to solve

the problem iteratively.

The partial differential equations are linearised in an incremental way.
The result of the linearised problem is used to obtain an estimation of the
solution of the non-linear problem, which is refined in succesive iterations until
the error is below an acceptable bound. The linearisation of the partial
differential equations is obtained by using a Taylor expansion in several

variables.

The resulting linearised partial differential equations are solved by using

the modal superposition technique described in sections 5.3 - 5.5.

The method of incremental linearisation of the partial differential
equations is a suitable technique to solve a npon-linear set of equations in

several variables, as explained in the sequel.

In the Newton-Raphson method the non-linear set of equations 1is
expanded in Taylor series [Dahlquist 74]. If we represent the set of non-linear

equations as f(x), Taylor’s formula gives:

f(x)=f[xk)+l"(xk )[x-:&k}-i-()(lx-xkl)2

L]
where f{x) is a nXn matrix, the Jacobian with element

£(x) = — () 1<i,ji<n
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We try to find a solution to the problem fix) = 0. If x, is close to the

solution of f{x) == 0, we obtain a better approximation as:
[ ]
fixk )kt xk )+ k) =0

whick we can solve for x“l, because in the case of non-linear functions,
this is a set of n linear equations. In the case of non-linear partial differential
equations, we obtain a set of limear partial differential equations as will be

shown later.

The evaluation of the Jacobian of a nXn system can be quite
complicated and time consuming. Therefore it can be advantageous to use the
same Jacobian during several iterations. This method is known as the

modified Newton-Raphson method and can be written as:
P Jak*! -k )+ k) =0 k = pp+m

In some cases it can be appropriate to evaluate the Jacobian only at the
first iteration step. This can be done when the solution is close to the initial

estimation and the non-linearities are not too severe. This can be written as:
f(x® J(x**! - x¥ ) 4 fx¥ } = 0

The selection of the most advantageous method depends strongly on the
nature of the problem. An illustration of the modified Newton-Raphson

scheme for a single function is shown in figure 5-3.

There can be a problem with the convergence of the Newton-Raphson
scheme. This is especially true for concave curves, as for example in the case
of stiffening systems. Also, if the initial estimate is not close to the root. the

convergence can be very slow, as compared to the quadratic convergence of the
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Figure 5-3:

Convergence of Newton-Raphson Method

* |
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full Newton-Raphson method.

The modified Newton-Raphson method has been applied extensively to
partial differential equations using non-linear finite element methods. When no
updating of the Jacobian is performed, the method is known as the initial

stiffness method [Bathe 80] and [Bathe 81].

In the case of time domain analysis, the initial stiffness method will
always convergence for sufficiently small time steps (Bathe 82|, although in

some cases of severe non-linearities, time steps will be extremely small.

The initial stiffness method has been applied to cables with relative
success [Larsen 82]. The method is espacially attractive for use with modal

expansions, because no update of the modes is needed in the time simulation.

5.8 Incremental Formulation

We will use an incremental formulation of the governing equations, using
a modified Newton-Raphson scheme. The Jacobian will be evaluated at 3
reference state, which was selected to be the static configuration of the cable.
In this work no updating of the reference state will be performed. The
formulation tskes fully into account the non-linearities of the problem by using

an iterative procedure to obtain the force balance.

5.8.1 Incremental Formulation of the Equations of Motion

The non-linear equations of motion can be written, including the added

mass in the normal inertia term, as:
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PP 0k cospy ) 4 B l40) - T 2
m-— = — - €08 + 14e}) - T — - sin
- Js ! ext.p ' Os ®1
(5.34)
M Pa_ 2 (T )+ F_, (1+e} + T %%
- = — . singd + 1+e} + — - COSQ
e s ! exta ds 1
The only non-linear terms are the restoring force terms, which are:
F 2 (T cospy ) - T P . g ¢
, = — . COS - . —— . 8in
int.t 95 1 3s 1
(5.35)
F ? T } T %%,
\ = — (T - sing; } + T-— - coso
int.n Is 1 ds 1

We will linearise those terms, using the estimation of terms from a
previous iteration plus a linearised part, while the Jacobtan is evaluated in the

reference state. This gives:

ki 08T T %6 A, + 2 ( T FLE
. = ——— - —— Q¢ — - CO8
int,t s [+] s 1 35 1
¢
- TF —2 - sing}
ds
i a9, . aT, Ao, + T a8d, (5.36}
mt.n 9s ds 1 o 9s
d do
+ — (T sing® ) + T¢ . —= cosg
Js as

Therefore the incremental formulation of the equations of motion

becomes:

8%p BAT 3¢ ]
m[(‘it—glk“:a 'TOE‘EA‘bl*‘%[Tk'COSd’I{)
S S

el
+ Fopp d1+eb ) - T8 3—-2 . sing¥
5
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{5.37)

& do ar LAY
M[—q]*+1=——9AT+——9A¢1+TO :
ote ds ds ds

a a¢
+ — (T¥ sing¥) + F,, (14e%) + Tk =2 cospt
Js ’ ds

5.8.2 Incremental Formulation of the Compatibility Relations

The non-linear compatibility relations are as given in 5.6.2

dp

(1+e) cosg, = (I+e, ) + [ a - q¢,,

(5.33)
‘ dq
(1+e) sing, = | — + PP ]
ds
The incremental form of the compatibility relations is:
94p ap" k k k
Ae = —— - Aqo,, + [ — - o, } + (1+e,) - (1+¢¥) cos
ds ds
(5.38)

3Aq qu ‘ —_
f1+e )Ag, = ;3‘;_ + Apg,, + [ 5;— + P9, } - (1+€%) sing;

5.8.3 Incremental Formulation of the Force-Displacement Relation

The most frequently used force-displacement relations can be written as:

T = f{e)
This can be written incrementally as:
il
AT = [_]e Ae+[r(e*)-'r"] (5.39)
de Jo

To keep things relatively simple, we will use, without destroying the

generality of the solution, a linear force-displacement relation.
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AT = A - E . Ae {5.40)

5.8.4 Incremental Formulation of the Governing Equations

We can substitute (5.38) and (5.40) in {5.37) to obtain the incremental
formulation of the governing equations. We obtain:

p 8 1 dAq
m—— - — [EA (—-— . Aq(bos)] [
o s s

l+e ds

J k do
= —T* cosqb‘{) + Fogt [l-}-ek ) - T 2 sinéli
ds w 0s

AR k k
— [EA [5;— - g9, + (I+e)) - (1+e ) cosd] }

d¢ 1 qu

- T —-°[ — + pkg, - (14e* ) - sinot ]
8 | l+e [65 P Pos L |
8*q 39, . (3Ap T, . 1 (6Aq oo (5.41)
M —5- -A—-&q¢)]- [ +-p¢]
8t~ Is [ ds o8 ds ll+e, Js o8
J 1 [ Ja)
T, — | (— + Apd,, )]
ds | 1+e, 8s
— (T" sing}) + exm(l+e ) + — cosg;
85 ds

b0 r, O'P
[EA [(_?f_— - chﬁos + (l+e) - (1+¢F) cosfﬁlf]]
S

O rp L2 (1t ) - sinok |
+ — — +p ko 1+e - sing ]
os [ ° l+e, s o8 L

These are the complete incremental equations using the modified Newton-
Raphson method. Note that in the left hand side are the linearised dypamic
equations. To obtain the linearisation around the reference state we did not

make any assumption about the reference state, so this can be any dynamic
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equilibrium position.

5.9 Solution using the Modes

As in the case of the linear dynamic problem, we look for a solution.

Pls.t) = 1(t) by, (8) + 8(t) by (5) + D C, () p, ()

i}

(5.42)

alst) = fit) gy (8) + gt) qup (5) + Y. C; (1) q; (5)

i=1l
where Past + Ygs2 and Pgst + Ggs2 1€ the two quasi-static solutions for the
reference state and P; . @; are mode shapes for the reference state. As
discussed previously the reference state was chosen to be the static equilibrium

configuration.

Because the quasi-static solution and the mode shapes satisfy the

compatibility relations, the following relations are valid:

k
o e = k%
A * ds
dqk ¢ (5.43)
k k 0
2 lin = —+ pr —
1 lin s s

where ‘-‘ﬁn! c‘:l" o afe the strain and the dynamic temsion obtained by

linear superposition.

We can pow obtain the modal equations of motion by multiplying
equations (5.41) with the modal shapes, addiog them up and integrating. The

following relations are used to simplify the equations:



-178-

L 8A L dp,
f P, — ds = - / A — ds
0 ds 0 Js

L 9A L dq,
[ q; — ds -f A — ds
0

Js Js
ap; 3¢,
& = o "N
Js Js
dq; o
S = — +p
Js Js

After some manipulation, the [ollowing modal equations are obtained:

Sy oog u OKY 4 W2 AC = AT Bk

. /‘ {[th“(l'l"e ) + ___] [Fextn I+e" )+ T, 'Z? ]qi}ds

L L
- fo e (Tk cos¢‘1‘ - To \ds - 0¢“ [T" sin¢!{[l+eo ]]ds

- fOL [EA[(elm + 1) - (1+ek )cosoil‘] lds

[(ﬁh T, (6% |, (1+e, - {1+e* )sing¥) lds

(5.44)

(5.45}

This equation is the full incremental representation of the non-linear, two-

dimensional cable problem using modal expansion.

(5.45) coutains known quantities at the iteration step k+1.

Explanation of terms:

Terms to take account of the boundary conditions:

The right hand side of
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Dynamic modal force:

“frex by,
+ f {[F‘u“(l-i-e ) + ——lpi
0 ' Js

8¢, ]‘la

X k %%
+ [F“u(l-}-e )+ T, —

Force terms to take care of the increments of the internal forces and

the non-linearities in the tension terms:
L L
. [0 e ('I‘k cos¢t - T, Jds - fo ®1i [T" sind:'l‘(l-i—eo }|ds

Force terms to take care of non-linearities in the
compatibility equations:

L
- fei [EA[(eﬁn + 1) - (1+e )cosq&'{] ]ds
0

3
) f o [ T, (6%, (142, ) - (146X Jsing¥] ]ds
Q

5.10 Time Integration of the Equations in Incremental Form

The time integration can be done as described in 5.4. Written in

incremental way, [5.16} become;

amn
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t+ALE:i = a (L+.MC=c—l + AC, - tCi ) -, téi - a tEi
H-AL(':_ — 3 (Kl 4 AC ') - a tC - a :'(f.‘ (5-16)
i 1 i i i 4 i 5 i
When we substitute in (5.45), the equations can be solved directly for the

modal increments ACi.

5.11 Non-Linear Boundary Conditions

The time integration scheme discussed in the preceding section is valid

for the following boundary conditions.

. Prescribed motions at the top of the cable in function of tiume.

The motions plus the first and second time derivative are required.

. The bottom end of the cable is a fixed point.

In offshore applications, other boundary conditiops, than the one deseribed
above, might be applicable. We will limit ourselve to the case of a cable
which can lay on the ocean floor. In most mooring line application this
situation occurs. The non-linear modal expansion technique can still be used,
when the bottom interaction forces are modeled as non-linear exterual forces

on the cable.

As reference state around which the modes are expanded. the static
configuration with the cable partially on the sea bottom is used. To be able
to use as few modes as possible, the static configuration should only include
the part of the cable which is moving from the bottom, and not the part

which remains on the bottom even during large motions.  This requires an
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estimation of maximum lift-off length before the time simulation. The
adequacy of the initial guess can be checked by looking at the dynamic angle
at the bottom point which should be very small during the whole time

simulation.

The expansions of the solutions, as derived previously can still be used:

Pls,t] = f(t) pogy (8) + Bt} Py 5) + 3 C; (t) p, ()

i=1

qsit) = flt) qg (s) + glt) qie (5) + D G (t) g (5)

=1
where p; (s) , q, (s) are the components of the i th mode with fixed end

conditions, for the appropriate reference system selected.

The bottom interaction forces can be modeled appropriately as vertical
external forces. This includes a linear of non-linear spring plus a damping
force. The damping force is necessary to reduce the numerical instabilities of

a large spring force.

F 0 for y>0

y bound.cond. —

' (5.48]
Fy.bound.cond. = -kiy)y-cy for y<0

(y distance of cable segment to sea bottom)

The npon-linear boundary forces are obtained by calculating the vertical
displacements of the cable at each iteration step. The vertical forces are
projected on the reference coordinate system and the modal contributions of

these non-linear boundary forces can be obtained.

It is important to realize that the accuracy and efficiency of the modal
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expansion scheme depends on the appropriate selection of the relerence
coordinate system used. The inclusion of long portions of cable which remains
on the bottom during the time simulation will require a substantial increase in
the number of modes considered to obtain accurate motion and tension

response.
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Chapter 8

LINEARIZATION
OF THE DRAG FORCES AND THE
NONLINEAR BOTTOM BOUNDARY CONDITION

8.1 Introduction

In this chapter we examine the possibility of using an  equivalent
linearization technique to model the drag forces. We will limit the analysis to
cables with a sinusoidal excitation at the top. When an  equivalent
linearization technique is used, the motion equations can be solved m the

frequency domain, reducing considerably the calculation time.

The cable experiences a significant nonlinear drag force when subjected to
a top excitation. The drag force is a function of the relative velocity between
the cable and the current, In this chapter we decompose this nonlinear foree
into a mean force plus an equivalent linear damping force by minimizing the
quadratic error between the equivalent representation and the nonlinear drag
force averaged over one period. The mean force can be included in the static
analysis. Equivalent linearized cable dynamic equations can be formulated using
the governing equations in chapter 1 and the damping coeflicients derived in
this chapter. These equivalent linearized dynamic equations are easily solvable
in the frequency domain.

The equivalent linearization technique has been applied to the OTEC cold
water pipe dynamics [Paulling 79] and riser dynamics [Krolikowski ROj.  See

also [Triantalyllou 82].
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6.2 Nonlinear Drag Forces in Two-dimensions

The drag force, as described in chapter 1, can bhe written in the [p,q)

coordinate system as:

Fext,p (1+e) = 05 p, C[)n {Re) D, (Using + v, Y| Usine + v !
(t+e/2) - sing,
+ 05 p, Cp (Re) D) (Vcosd - v ) [Ucoso - v |

{1+e/2) - cosg,

{6.1)
Fexeqll+e) = - 05p Cp (Re) D, (U siné + v, ) [Using + v |

(1+e/2) - cosg,
+ 05 p, Cp, (Re) D (U cosp - v |Ucoséd - v |
(1+e/2) - sing,

where: ¢ = ?, + 9

op - dq
vV, = — - c0$¢, 4+ — - sin
R P
dp fq
¥, &= - —  sing, + — . cos
‘ at AT ¢

We can rewrite these equations in nondimensional form using the relative

velocities between the cable and the current as:

F
Fo= L
P05, D, UL

= (‘Dn A 14' SiﬂOl + CDt B ]Bl cosél
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F = Pq (6.2)
9 05 p, D, UL

= - Cp, A |A] coso) + Cpe B (B} sino,;

where:
. 1 dyq 1 dp
A = (sinp, + — — ) cosQ + (cos¢, - = — } sino,
U ot U o
B ( 1 dp 1 dq
= (cos@ - — — ) cosp, - {sino + —~ — } sino
° gt ‘ ° Ut !

In the above equations the assumption is made that the influence of the stratn
on the drag forces is negligible. The following new variables are introduced
and substituted for the absolute signs.
|A| 1B
sgn{Al=— sgn{B}e=-— (6.3
A B

The nonlinear nondimensionalized drag forces can now be written as,

Fp = Cpy A° sga(A) sino, + Cpe B* sgn(B} cosd, -
E
Fq = - Cp, A® sgnlA) cosoy + Cot B° sgniB) sind,

6.3 Assumptions

Several assumptions are made in order to approximate the ponlinear drag

force with an equivalent linearized force.

1. The linearized cable equations. except for the drag forces.are
valid. The motions are small and the dvpamic tension generated

is small compared 1o the static tension.
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2. The excitation is sinusoidal

3. The tangential drag forces are small compared to the normal drag
forces | CDl. = Of¢) ).
Under the above conditions, the two dimensional sinusoidal motions can be

writlen as:

p = p, eonfwt+tey)

q = q, rosft+e,) [6.5)
¢ =9, ccs(ul+¢3)

where: p_, q, and ¢_ are small quantities of order ¢

and ¢,, ¢, and tq Fepresent the phase angles,

8.4 Approximation of the Nonlinear Drag Force for Small Motions

The expressions for the nonlinear drag forces can  be simplified
significantly if small motions and a small tangential drag  coefficient  are
assumed. Generally we can distinguish three cases as a function of the ratio

ol the cable velority to the current velocity.

er hﬁ"q

— and —2 g}

L L

wp wq

— and -2 ~ i (6".)]
U U

W‘p \-\-‘q

—2 and —2 p

[ [

The two limiting cases, which represent the large current and the small
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current velocity {compared to the cable velocity) are studied here.

6.4.1 Large Current Velocity

For large current:

wPp <
— 2 and —— =~ ¢
| U

The drag forces can be approximated to ()[f.:] as

Fp(l) = Cp, sino, lsinou| Oaf‘ﬂﬁ{w'l+{3l

+ Cp, coso, [caso, |

-q : ,
Fq{t.) X - ('Dn{ SN |sino | - 2 {-—1 | sino | sinfwt+¢ ]

+ 2 lsinool enso ¢3cos|..;t+¢3}}

6.4.2 Small Current Velocity

For small current:

U U
and — >~ ¢

wp,  «q
The drag forces can be approximated to O(1)

(53]
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“l, . “hy
Fp{t) ~ - Cp | ET—- sinfwt+¢,) | l_}_ sin(wt+e€,) ¢ cos(wt+ey)
wp wp, .
+ Cp, | U—a sin{wt+¢ ) | i——% sin(wt+¢,)
(6.8)
“a, “q,
Fq(t) ~ Cp, | b_ sin{wt+e,) | 6— sin{wt¢,)

6.5 Method of Least Squares

We propose to approximate the above equations by forces proportional to

the cable velocities as follows;

1 9p
(6.9}
1 dq

Ip order to minimize the integral of the square of the residual over the period

interval the Method of Least squares is used. The residuals are defined as:

E, =F, - F,
(6.10)
E, = F, - Fq

The following conditions must be satisfied:
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=3
]
[
.
D
-2

@

2]
ot
I
L]

D
=
o ta
I
o

6FFOq

D
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(6.11)

8.6 Integral of the Square of the Residual over One Period

6.6.1 Large Current

%
Eg = 1/(2n) [0 { C’Dn sing, |sin¢>o| ¢3cos{wr+(3)

+ CD!.

wp, | a
cos¢o |cos¢o| - FFop + Cq U—a 51n(ur+fl]}" dr

(6.12)

If the method of least squares is applied, we can find the equivalent

mean static force and the linear force as follows:

Frop = Cp, €089, [cosQ,|
- H 1 U—-—
cp = - Cp, sing, |sing,| & sin(e -¢5)
%)
a
Similarly,
FFOQ = - CDn sin¢0 |Siﬂ¢0|

Cp=-12 Cp, Ising | + 2 Cpy lsing } cosé, ¢ sin{ey-¢5)

(6.13)

U (6.14)

:...'qa
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6.6.2 Small Current or No External Current

In this case we obtain:

8 wp 8 wq
C='Cm“_=l Ce=- Cm = -
P 3r U 1 3r

8.7 Linearized Equivalent Damping Coefficients

From the above relations we can obtain the

coelficients written in dimensional form:

dp
F == - —
P P at
dq

Fq='bq3_t

{6.15})

equivalent damping

(6.16)

where bp and bq are the equivalent damping coefficients obtained from the

equations (6.13), {8.14) and (6.15). The final forms for the equivalent damping

coefficients can be obtained for each case as:

For large current:

|U sing | U sing,

b = 0.5 p, Cp, D ( } ¢asin(el—£3)

p wp,
|U sing | U sing,

by = pw CDI!I D {lU sin¢°[ - [

q wy,

For small current:

(6.17)

) 8,sin(eyeg))
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4
bp = po Cp. P 5; wp,
4 (6.18)

8.8 Numerical Solution of the Cable Dynamic Equations using the

Linearized Equivalent Damping Force

The three-dimensional linear dynamics of a cable with a two-dimensional
static configuration have been studied in chapter 2 and the uncoupled in-plane

and out-of-plane governing equations have been obtained.

The equivalent linearization of the nonlinear hydrodyoamic drag forces
can be used directly in the equations obtained in chapter 2. The centered
difference scheme formulated in chapter 3 has been modified to include the
equivalent dampingterms. The matrix form is the same as that in chapter 3
except for the linearized damping forces. The matrix formulation is now in
terms of complex quantities due to the damping forces and has been
implemented numerically. To find the correct estimation of the linearized
damping coefficient an iteration procedure starting from an assumed initial
amplitude is used.  This numerical procedure has been implemented in a

computer code.

6.9 Linearization of the Nonlinear Boundary Conditions

8.9.1 Introduction

When a cable is laying partially on the bottom, dynamic motjon causes

constant changes in length of the cable on the bottom (See figure 6-1). The
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Figure 6-1: Bottom-cable Interaction
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Figure 8-2: Motion Kinematics
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touch-down point moves constantly along the length of the cable.
Mathematically this can be expressed as a moving boundary condition. [t 1s
pot practical to use a moving boundary condition in a linearized theory. We
propose therefore to replace the moving boundary condition by 2 fixed
boundary condition on the cable at a point which is just outside the touch-
down zone. The boundary condition has to be specified in such a way that it

models correctly the bottom part of the cable.

8.6.2 Kinematics

To be able to approximate the dynamics of the bottom part of the cable.
some a priori assumptions about the motion behavior have to be made. The
assumption is made that the shape of the cable between the new boundary
point and the bottom is parabolic, with the curvature equal to the statie
curvature at the boundary point. The variation of curvature along the bottom
part of the cable is assumed to be small (See figure 6-2). If we assume
subsonic motion of the bottom part of the cable the slope of the mooring line

will be zero at the bottom, therefore:

3¢ ) q.(b)
o = BB (6.19)
ds Js 81
Since the curvature is constamt we obtain:
s i
afs) = q(b) ( 3 ) (8.20)

Within this Jinearized theory, we also make the assumptions:
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2
qfs) = q,(b} { 6—1) (6.21)

*
qu(s] = q“‘b) ( a ] {(6.22

6.9.3 Dynamic Equilibrium

The inertia forces in the tangential direction are assumed to neglibly

small. In the norma) direction, we obtain:

d N
Fbound.seg, inertiag E; '/;M q, ds (6.23)

To linear order this can be written as:

Fbound.aeg. inertia,g 1/3 M q{b) b (6.24)

Equilibrium in the normal direction gives:

T, b) ¢,(b} = kq.eq qib) + 1/3 M q,,(b) (6.25)
Equilibrium in the tangentiai direction gives:

T\b)= k;, o p(b} {6.26)

In this pew equivalent boundary conditions, we can select the stiffness

parameters k . k . 10 model correctly the bottom-cable interaction.

p.e
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Chapter 7

TERMINAL IMPEDANCES

7.1 Introduction

The concept of termination impedances has been widely used in the
design of guyed masts (See for example [Davenport 65). In mooring linc
design, the termination impedances can also be useful. In this chapter we will
discuss some introductory concepts about terminal impedances. This will allow
us to caleulate the eigenfrequencies and the linear response for multi-leg
systems. The concept discussed here is only valid for linear systems. In the
_case where equivalent drag damping is used, the superposition principle is not
valid anymore, so that the combined response can only be obtained by adding
the equivalent impedance coefficients with the correct motion for each leg of a
multi-leg system. Further research in the domain of equivalent impedance

coefficients for multi-leg systems is certainly required.

7.2 Terminal Impedances in Two-Dimensions

The upper end of the cable is excited by an externally imposed harmonic

motion. The mooring line termination impedances are defined in the following

way.

Sl Syl X ] s (7.1)

Syx(w) Syy(u) 4 F
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where:  x: complex amplitude motion, horizontal direction
y: complex amplitude motion, vertical direclion
F,: complex amplitude force, horizontal direction

F’: complex amplitude force, vertical direction

The resonance [requencies are the poles of the impedance transfer
functions. The mooring line admittance matrix can be calculated as the
inverse of the impedance matrix. In practical applications, the above transfer

matrices can be used to find body motions and dynamic tensions.

At the top of the cable, sinusoidal motions in the x direction and the ¥

direction are imposed. The dynamic forces at the top are obtained as:

Sex =t Tpy - o8¢, - T, - sing, - opyl/A,
(7.2)
syx =| T,, - sing, + T, - cosg, - ¢11/A,
where: T,,, ¢, are the dynamic tension and the dynamic angle,
respectively, caused by external motion in the x
direction
Sxy =|[ T,, - cos¢, - T, ' sing, - ¢12/Ay
(7.3)

S” =| T12 - sing, + T, - cos¢, - ¢12]/Ay

where: T,,, ¢,, are the dynamic tension and the dynamic angle,
respectively, caused by external motion in the y
direction

The dynamic tension at the top due to unit motion in the x and the y

directions is also a very important transfer [unction. It indicates how much
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dynamic tension is generated in the cable by a unit amplitude motion, and can
be used directly in fatigue analysis. The dypamic tension transfer functions

are defined as;

S T /A

Tx ~

(7.4}

Sp, = Tia/A,

Ty

The solutions of the above equations can be obtained by solving the
linearized dynamic equations in the frequency domain. Solutions were obtained
by using the perturbation method described in chapter 3 and also by using the
finite difference scheme. An example of terminal impedances can be found in
part II. When equivalent linearization is used, formulas {7.2) and (7.3) remains
valid for a particular amplitude of motion, but the superposition principle can

not be used anymore.

7.3 Termina! Impedances in Three-Dimensions

The concept of termination impedances derived for two-dimensional cable
dynamics can easily be extended to three dimensional cable dynamics. By
using the Eulerian angles and the transformations of coordinates (as derived in

chapter 1), the tension force at the top of the cable can be decomposed as:

F=F_ +F, = (T, + T, ) cos(¢ 4+9,) - cos(f,+,)
Fy = Fy0 + F‘y1 = (T, + T, ) - sin(¢0+¢l) (7.5)
F,=F,+F,, =-( T, + T, ) cos($,+¢,) - sin{f +8,)
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where the subscript o denotes static quantities and the subsecript 1 denotes
dynamic quantities.  Assuming small motions, the equations (7.5} can be

linearized and the dynamic forces can be obtained as:

F. =- T/#cosésind - T ¢ sing cosé + T,cosg cost
F‘yl = Tlsinéo + Tﬂ¢1cos¢n (7.6)
le = Tot;blsinqbosinﬂo- Toﬂicoscﬁocosﬂo - Tlcoséosinﬂo

where Tl. # 81 are the dynamic tension force and the dynamic angle
respectively. The mooring line {ermination impedances are delined in the same

way as in the two dimensional case:

S, W) Sxy(u] S, X F
Sl Spw) Sl |y |=|F, (7.7)
S, (w) S“(u) Su(u) z Fa

where:x: amplitude of motion, x direction in absolute coordinate system
y: amplitude of motion,vertical direction in absolute coordinate system
2: amplitude of motion, z direction in absolute coordinate system
F,: force amplitude, x direction in absolute coordinate system
F y force amplitude, vertical direction in absolute coordinate system
Fz: force amplitude, z direction in absolute coordinate system

(all armplitudes are complex )
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7.3.1 Terminal Impedances in Absolute Coordinate System

For harmonic motions, the above matrix equations e¢an be expanded for a

three-dimensional cable as (see figure 7-1):
Sx =[ - Toﬂucosqﬁosinﬂo - T ¢,,51nd cosb + Tllr:o*s,qﬁocos5‘0]/.»\x
S, =| Tyysind, + T, 8, 0089 |/A,
8. =] Toéusingbosinﬂo - Toﬂllcosdﬂocosﬂo . Tucosqbosinﬁo]/:’&x
S,., =[ - Toﬂlzcosgﬁosinﬁo - T ¢,5ind cosf + Tlgcosqﬁacosﬁo]/.&y
S,, =l T,ssind, + Toémcosqboj/ﬁ& {7.8)
S,, =| T_#,csing sinf - T ¢ ,cosé cosd - Tmcosqbosinﬂn]/;\y
S =[- T_f#;c05¢ sinf - T o .sing cosf + T jcos cosf ]/A,

S,, = T,ssin¢, + T0¢13c05¢0]/A1

8,, =| T ¢, zsingsinf, - T 85086 cosd - Tl3c05qﬁ-n«:»ixlfiﬁo]/.ﬂqkz

where T,., #,. and ¢, are the complex amplitudes of dynamic tension force
1j 1) P

1
and dynamic angles due to external motion in the j-direction. A, Ay and A,

are the complex amplitudes of externally imposed harmoaic motions.
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Figure 7-1: Impedance function in Global Coordinates for a Cable with
Three-dimensional Shape
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Figure 7-2: lmpedance function in Local Coordinates for a Cable with
Two-dimensional Shape
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7 3.2 Terminal Impedances in Local Coordinate System for a Cable

with a Two-dimensional Static Shape

From the linear dynamic analysis of the cable with an in-plane static
shape the in-plane motions are krown to be uncoupled from the out-of-plane
motions. In other words there is no driving mechanism in the out-of-plane
direction due to in-plane motions. (See figure 7-2) This simplifies significantly
the terminal impedance functions. Following simplification can be made when

the local coordinate system is used (see 7-2}:

0y ="Y, =0
T, = 0 (7.9)
P13 =0

The compact forms of the termination impedances are obtained as:

S = - T, ¢, sing, + T,, cosd, J/A,

XXx

S, =| T,; sing, + T, ¢, cos_I/A.

¥y

Sz'x‘ =0

Sy =[+ T, ¢4 sing, + Ty cosg, ]/Ay.

Sy =[ T,, sing, + T ¢, cosd, ][Ay. {(7.10)
S. =0

Ly
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SX‘I‘ = 0
Sy =0
Sll!.! = T° 0]3 c03¢0/Aln

7.4 Terminal Impedances of multi-leg systems

7.4.1 Multi-leg System Impedances in Absolute Coordinate System

From the definition of termination impedances for three-dimensional cable
dynamics, the final forms for multi-leg systems are expressed in summation of

each terminal impedance as follows (See figure 7-3):

[ n n
Sxx = Zl S:u: Sxy = Zl S;cy sz = Z S:cz

== 1= 1=

] ) n n

{7.11)

|
™
<L

i .
Yy Z Syy S” -

i=1 i=1 1=

o
L
]
i
e
g W
!
#5]
I

b - .
Sx; = Z S:cz Syz - Z S;rz Sn = Z S’zz

jm=] i ] i=]

where: superseript (i) represents the ith cable of the multi-leg systems

7.4.2 Multi-leg System Impedances starting from Impedances for a

Cable with a Two-dimensional Static Shape

By using the specialized forms of equations (7.10) the total termination
impedances of multi-leg systems where each cable has an in-plane static

configuration can be obtained as {See 7-4):
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Top View Side View

l\'

Figure 7-3: Impedance Function for a Multi-leg System
(Three-Dimensional Static Shape)

Top View Side View

Figure 7-4: Impedance Function for a Multi-leg System
{(Two-Dimensional Static Shape}



o n
Sex = E Sex: c°520‘0 + Zl S singﬂ:)
=1 =z

n
Syx = 121 Sl costh

Six = E (- Si'x‘ + Siﬂ- ) COSGL sinﬁL

X

b

n
Sxy = Z S;.y. cost,

)
o

i o
2y { = Sy ) sinf}

S, =2 (-8 +8L. ) cost sind

X
=1
L i -
Sy, = Zl { - S;.x, ) siné}
it 3

o
S =2 S sin29:,+ lz:l Sy coszﬂ'o

This formulation is strictly valid only for the linear dynamics of a mooring
system. I the equivalent drag damping is used, the evaluation of the
impedance function of each leg must be dome at the correct total imposed

motion to obtain the correct total equivalent impedance function.
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The general formulation for a multi-leg system is identical to (7.11} when
the static shape of each cable is two-dimensional and no equivalent damping s

Used, using the assumptions (7.9}.

1.5 Application to a Two-leg System with an In-plane Static

Configuration

The impedance functions for the in-plane motions are completely
uncoupled from the out-of-plane motions (assuming a livear system}. The total
impedance function can be obtained by simple addition of the two single line

impedance functions {see figure 7-5):

1 2 1 2
S t Sx Sxy ) Sxy X Fy -
) = {7.13)
P 1 2
Syx Syx Sy}' + Syy ¥ Fy

Especially, if the two legs are symmetric, the above relation is reduced to the

simple form:

1
2 Sxx 0 X F 1)
—3 0.
0 2 st y F
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Figure 7-5: Impedance function for a Two-leg System
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Chapter 8

IMPULSIVE MOTIONS OF
A HORIZONTAL, SHALLOW SAG CABLE,
SUBJECT TO A HORIZONTAL MOTION AT ONE END

8.1 Governing Equations

A cable is suspended between two supports at the same elevation, one
end is held fixed and the other is forced to move with some prescribed
motion. In what follows the motions of this cable are simulated using the
superposition of the eigenmode shapes as derived in chapter 5.  The
simulations of this section are different, however, than in the rest of the
report, because of the importance of the elastic cable modes, which allows the

simulation of travelling elastic waves.

Non-dimensionalizing displacements with respect to the cable length yields

the equations of motion for a shallow sag horizontal cable as;

m 123 EAdp EA 1 0q .
—_——= — — - a (— + — ‘
H a2 H & H  14e, 85

M L? 8% EA 3% EA 1 ép L .

. —_—t o —+ ) — + = Fy (8.2)
H a2 H(l+e) 8° H 14e, 8 H

here are also the following boundary

For the cable considered in this analysis t
and initial conditions:

(8.3}
p{0,t)= 0
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Figure 8-1: Horizontal Shallow Sag Cable with Horizontal End Excitation
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q(0,t)= 0 (R.4)
p(1.t)= P(t} (8.5)
q(1.t}= a P{t) (8.6)
p(s,0) = gls,0) = pls.OF = q(s,0) = 0 (8.7)

In order to use the technique of mode superposition on this sel of cable
equations it is first necessary to find the eigenfrequencies and eigenmodes of
the cable configuration. This is accomplished by assuming that the motions
are harmonic, the boundary conditions are homogenecus and by neglecting the

normal drag. With these assumptions the equations of motion become.

ml? EA 8%¢ [EA 1 9y
. Wwls) = ——-0a(—+ — (8.8)
RETRPY: H  l4e, 85
ML? EA &% EA 1 o L
. Wgls) = ——— — o (— + —) =+ - F, (8.9)
H (1+e ) s H 1+e 8 H
where the following substitutions have been made,
p = £s) e
_ {8.10)
g = nls) e

The eigenmodes and eigenfrequencies are the combinations of « , £, 1, which
satisly equations (8.8) and (8.9} and which have been derived in this report.
Applying these results to a shallow sag cable leads to the following two

transcendental equations for the natural frequencies of the horizontal cable,

t-an[;/:’.‘): Q—; tanh ( Q/2 ) {8.11)
a
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and,

Qu -
- —— tan{w/2}=
— tan(a2)

tanh { Q/2)

where;

H_ w? )1]2

_.(02-
EA

(8.12)

w? = u? L? (M/H), non-dimensional frequency

Equation (8.11) is the equation for the even symmetric frequencies of the cable

and equation (8.12) is the expression for the odd antisymmetric frequencies of

the cable. The corresponding mode shapes are found as,

-~ sin(w /2
£, = A sinfws) - % sinh (Qs)!
(8.13)
A u-Jn - o sin(u—)nﬂ] b (O
n, = Al - cos(w,s) - Qnh0,/2) cosh (Qs)]
for the even symmetric frequencies and,
A - cos[u_)n/2] b
fn == l cos{wns) - m cos (Qns)]
B B (8.14)
W, | - a cos(w, /2)
n, = A [ - — sin{w;s) + ————— sinh (Q,3)]
a Q,eosh(Q, /2)

for the odd antisymmetric frequencies, where the conmstant A is chosen to

satisfly the orthonormality condition, as derived in chapter 3.
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1

f (m €, + Mnn Js =1 n=m
] (8.15)
= 0 otherwise

The next step in the analysis is to convert the inhomogeneous boundary value
problem described by equations (8.1) through (8.7) to a homogeneous boundary
value problem. This is accomplished by findiog a quasi-static solution which
satisfies the boundary conditions identically and then sassuming a solution of

the form:

plst) = plsIP(t) + 3, Cylt) £,(5)
i=]
B (8.16}
qls.t) = qiisIP) + 2 Cy(t) nyls)
1=]

The quasi-static solutions for the horizontal shallow sag cable may be found

as;

pqs(s]=[c25/2+ca)sin(as)+{- ¢,8/2+¢,)cos(as)

(8.17)
qu(s)={c3+czs/2+ ¢,/ [B1/2)eos(as) - (c,+cy/al8-1/2]-c;s/2)sin{as)

where = H/EA

and the constants ¢}, €y €3 and ¢, depend on the boundary conditions.

Having the quasi-static solution, the expressions in (8.16) are plugged in
the original set of equations (8.1) through (8.7) yielding a new set of

differential equations describing the cable motion:
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n 2
minagcnf_Efiafn_a(E__}_ ]zn: ca_qﬂ
H =1 a2 " - H =1 8s? H 14+e =1 " os
M L2 8°p
+ Pedls) = (8.18)
ML? &, 8%, EA 2, ¥,
Y Raa=——2 G+ a(—+ S
H =1 ot H(l4e)i=1 " 8s 1+e, =t 33
L . L2 o a%p
+ = Fy + ——qds) — 8.19
H d H qqs at2 ( )

Multiplying equation (8.18) by £ (s) and equation (8.19) by n_(s), integrating
over the length of the cable and making suitable use of equations (8.8), {8.9)
and (8.15), the original partial differential equations are reduced to a set of

equations for the time dependent coefficients, c, (t):

A \ 1 %P m L?
a2 =-CnpWpt j;) 'a_t""g" "H_ qu(s] 5m(3) ds

(8.20)

15°P M L2 1,
e A

With initial conditions which must be derived in a similar fashion and are

found to be;

¢, (0)=0

Be (0)  9P(0)

(8.21)
= fn (Puls) € + ayfs) ) ds

The remaining problem which must be adressed is the effect of the drag term,
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Fg- I the drag term where a linear function of the displacement, the drag
term could be lumped into a linear modal damping coeflicient, which would
account for the structural demping as well as the linear drag. However, the
drag of the cable will, in general be s non-linear function of the normal
displacement which requires an iterative procedure to find the correct motion.
Neglecting the drag term in the [irst approach and rewriting the expression for

¢ (t) in state variable form, we obtain

1
%m_ 2
at m
a2 . ,  MLT 1 a°p (8.22)
e fo (ags) M) + Pele) &) ds —
With the initial conditions:

el (0) =0

. apP(0) ! (8.23)
tp (0} = - P f (ags(s) Mp(s) + Pogls) EMds

]

in which form a numerical integration scheme may easily be applied.
Foliowing the advice of Hornbeck [Hornbeck 77} numerical integration is carried
out using a fourth order Runge-Kutta method for the first four start-up steps
and the remaining integration is carried out with a 4th order Adams Predictor-
Corrector method. An application of the above procedure can be found in

part 1L



-218

8.2 References
[Hornbeck 77} Hornbeck, R. W.

Numericol Metheds.
Prentice Hall, Englewood Cliffs, New Jersey, 1977.



-219-

Appendix A
PROOF OF THE COMPATIBILITY RELATIONS IN TERMS OF
VELOCITIES

Let ;{t,p] denote the velocity of @ material point of the cable. Then
compatibility provides the following relation:
Dv  de - -

e — T4+ {1+ ) .
T o + { ef{wXt) (A.1)

We can prove this as follows: let ?{p,t] denote the vector from the origin
of a Cartesian system to a material point. Then, according to the definition

of the tangential vector (see also {Hildebrand 48}}:

- Dr (t.p)
t(t.p) = (A2}
Dp
Al time t + 6t the segment has stretched by a certain amount.
de
dpls, t+6t) = b 1+e+—6t]
at
opls,t) de
o [ 1 +e+— Bt ]
1+e dt
St Oe
~ Op(s,t) [ | 4 — -—] (A.3)
14e Ot

where relation (A.3) is exact in the limit as & — 0. Note also that it is
convenient to revert to the Langrangian coordinate s, which is time invariant.

At time t+6t therefore, the tangential vector is:
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- Dr(t-+8t,s)
U (t+Bl8) = ———
Dp(t+5t,s)

while:

—p

[ — 3r - —
r{t+8t,s) >~ rits) + 8_ (ts) - 8t = r(t;s) + v(ts) - 6t
t

a relation which is, again, exact as 6t — G. So finally

1 D

T {tbt s)"_v——————--——[?+;-6t.]
’ B Oe
14— - Dp
14e 3t
or:
Dt i 1 _.( i) .«.( ] Dv de t
— = fm o [ (t4bts) - tits ]-_:-—---—
Dt *0 Dp ot l+e
but from {1.8) we obtain that:
Dt = -
— = wXt
Dt
therefore:
Dv  t B

XL s
Dp 1+e A

When this is rewritten in the unstretched Lagrangian coordinate, (A.1) is

obtained.

(A4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)
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Appendix B
HIGHER ORDER WKB APPROXIMATION OF THE STRING

EQUATION

The string equation with varying coeficients can be written as:

d dq
- [ T(o) — ] + W LEM(o) g =0 (B.1)
ds do

with: M(e) and T(c) slowly varying.

4 w? M L2 \
and/for: ——— large.
T

(o is the non-dimensional length)

The WKB approximation is of the following form:

1
YT

q et lfz, + 321w2) (B.2)

a
where: g, = / (M/TY/? do
4]

o 1 T 1 T2
== A — et —
B2 0 [ 8 (T-M)Y/2 3z (Mp/2.1%/2
1 MT
" 15 M32(T)H/2

5 M2(T)2 1
T w2 s M
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Appendix C
ORTHOGONALITY OF THE MODES OF INEXTENSIBLE CABLES

The self-adjoint differential equation was obtained in subsection 3.6.4 as:
A2 A2

¢ ]‘ . £=10 (C.1)

11
[ cosd,, £ ] + [ 2cosp + ; 5
cos°P,, cos“¢,
Assume § , §; eigenmodes with eigenvalues X, , Ay We can write for

mode it

[ cosg, & ]" + [ 2c0s6, € ]1

3 b
= 22 { . L+ : } C.2
' [ cos%o ] 0052¢° E' (2

Multiplication with § and integration over the domain gives:

¢ 0
f o Ej { [ cosg, 6{] ]H + [ 2cos¢, E% 1‘ } d¢,
%ot
6 t hé.€.
=>.?fmp{'fj[_i;'l+’§2j_}d¢0 (C.3)
Fbot cos“g, cos“g,

Using partial integration, this can be written as:

¢
[ @ € 48]
]

bot

be0p 33 £ &
= \? [ )t L p 2t |d C 4]
: S I cos%o coszqﬁo] ¢° {

bot

The same operation can be performed by multiplying § with the equation
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for the mode Ej and integrating:

/ - [ coss, € - 2oondy € 6] ] 40,
[

bot

b £ &
=\’ L 4y p =2 |d
x’ .[ & [ c052¢ R * 1:082¢r0 ] ¢°

bot

Substracting (C.4) from {C.5) gives:

bpop . € € 3
flplengp +h£j§| d¢o=0 fori;éj
dpor - €OS ¢, cos“P,

which was to be proved.

Using the relation that:

1 I _

Ei = 1 'Ej = fl'j
and

d¢ m

—2 = coszgévo h = —

de M
we obtain:

1
f[m5i5j+Mﬂiﬂj)d0=0 for i#j
0
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Appendix D
ORTHOGONALITY OF THE MODES OF EXTENSIBLE CABLES

Using influence functions, the requirement for the modes of an extensible

cable can be written as [Rosenthal 81):

L
l%w=ﬁﬂmmﬁwmmwm (D.1)

where in the two dimensional case, with the components written in the

tangential and normal direction, we have:

o &NF = [p; (8} q; (s)] {D.2)
Hy, (51) Hy, (s9)
[Hs,1)) =
H21 (s,0) HQQ (s,1) (D.3)
m(r) 0
Im{r}] =
0 M(r) (D.4)

therefore: [m(r)]T = [m(r)]

H(s,n|T = Hirs) (D5}

Multiplying (D.1) with the transpose of a the modal matrix of a different

mode and the mass matrix, and integrating, we obtain:
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jo fofs)T [mis)] larfs)] 0

L L
= o} [ oo mi) s [, Bl o) fofn)
Due to (D.5) this is equivalent to:
L
fo o )T [mis)] lagfs)] ds

L L
= w? (N7 d ; . d
o [ lerl” It [ el i) fas) ds

We can apply (D.8) also to the jth mode. Subtracting the result from

(D.7) when w, is different from Wy then:

L
fﬂ o)™ Im(s)] fofs)] ds = o i

or, explicity in non-dimensional form:

1
fo(mfifj+Mqiqj)da=0 i



-226-

Appendix E
BIBLIOGRAPHY

A bibliography of books and sarticles in the area of single span cable

statics and dypamics, collected during the preparation of this report included

in this appendix.

[Acaster 72]

|[Afshari 73]

[Afshari 74]

[Allen 49

[Allen 51]

[Anand 66)

Acaster S.M.
Anchor Lines in the North Sea.
Offshore Technology Conference (OTC 1535), 1972.

Afshari, H. and Soler, AL

Cable Network using Galerkin's Method and Polynomial
Approximation Functions.

Journal of Applied Mechanics, Series E 40{2):622-624, June,
1973.

Afshari, H. and Soler, AL

Vibration of cable Gridworks with Small Initial Deformation.

Journal of Applied Mechanics, Series E 41(1):131-136, March,
1974.

Allen, H.J.
Estimation of Forces.
Technical Report RM A9126, NACA, November, 1949.

Allen, H. J. and Perkins, E. W.

A Study of the Effects of Viscosily on Flow over Slender Bodies
of Revolution.

Technical Report 1048, NACA, 1951

Anand, G.V.

Non-Linear Resonance in Stretched Strings with Visecous
Damping.

Journal Acoustical Society of America 40(6):1517-1528, 1966.



[Anderson 78]

[Angrilli 77)

[Barmina 73]

[Barr 74)

[Bleich 50

[Blevins 77]

[Blevins 79

[Bliek 82]

{Bliek 84]

-227-

Anderson, J.

Tension Leg Platforms.

In North Sea Development, pages 145-158. Heyden Publishers,
Glasgow, 1978.

Angrilli, F. and Bergamaschi, 5.
On the Small Two Dimensional Oscillations of a Sea Line.
Meccanica 12(3):144-150, 1977.

Barmina, L.A.

Force Acting on a Deformable Contour in an Arbitrary Fluid
Stream.

I:v. AN SSSR, Mekhantka Zhidkosti i Gaza {1):4-8, January,
1973.

Iz Russian, translation in Flutd Dynamics 1975.

Barr, R.A.

The Non-Linear Dynamics of Cable Systems.

Technical Report UM-IMR 74-1, Sea Grant, University of
California, 1974.

Bieich, F.

The Mathematical Theory of Vibration in Suspension Bridges.

Bureau of Public Roads, U.S. Department of Commerce, U.S.
Government Printing Office, Washington, D.C., 1950.

Blevins, R. D.
Flow Induced Vibration.
Van Nostrand, Reinhold, New York, 1977.

Blevins, R. D.
Formulas for Notural Frequency and Mode Shape.
van Nostrand Reinhold Co., New York, 1479.

Bliek, A.
Motion Analysis of an Ocean Mining Pipe.
Master’'s thesis, MIT, 1882

Bliek, A.
Dynamic Analysis of Single Span Cables.
PhD thesis, MIT, 1884.



-228-

[Bondarenko 73] Bondarenko, L. A. and Y. L. Yakimov.
The Force Produced by a Liquid Current on a Thin Curved
Body of Circular Cross Section.
Jzv. ANN SSSR, Mekhanika Zhidkosti ¢ Gaza {1):9-12,
January /February, 1973.
Ino Russian, translation Plepum Publishing Company 1975.

[Breslin 74] Breslin, J. P.
Dynamic Forces Exerted by Osciltating Cables.
Journal of Hydronautics 8{1):18-31, January, 1974.

[Calkins 79] Calkins, D. E.
Hydrodynamic Analysis of a High Speed Marine Towed System.
Journal of Hydronautics 13(1):10-19, January, 1879.

[Cannon 72a)  Cannon, T. C. and Genin, J
Three Dimensional Dynamical Behaviour of a Flexible Towed
Cable.
Aeronautical Quarterly 25:201-210, August, 1972.

{Cannon 72b]  Cannon, T. C.
Dynamical Bebaviour of a Materially Damped Flexible Towed
Cable.
Aeronaufical Quarterly 23:109-120, May, 1872.

[Capanogly 78] Capanogly, C. C.
Tension-Leg Platform Design: Interaction of Naval
Architecture and Structural Design Considerations.
Marine Technology 16{4):343-352, October, 1978.

[Carrier 45] Carrier, G. F.
On the Non-Linear Vibration Problem of the Elastic String.
Quarterly Journal of Applied Mathematics 3(2):157-165, 1945

[Carrier 49] Carrier, G. F.
A Note on the Vibrating String.
Quarterly Journal of Applied Mathematics 7(1):97-101, 1849.

[Casarella 70}  Casarella, M. J. and Parsons, M.
A Survey of Investigations and Motiops of Cable Systems

under Hydrodynamic Loading.
Marine Technology Society Journal 4(4), July-August. 1970.



-229-

[Chakrabarti 82)Chakrabarti, S. and Frampton, R. E.

[Chang 73]

[Charnews T71]

[Chen 76]

{Chhabra 79]

{Choo 71]

[Choo 72]

[Choo 73]

[Chu 83]

Review of Riser Analysis Techniques.
Applied Ocean Research (4), 1982,

Chang, P. Y. and Pilkey, W. D. '
Static and Dynamic Analysis of Mooriag Lines.
Journal of Hydronautics 7(1):29-34, January, 1973.

Charnews, D.P.
Drag Coefficients of Vibrating Synthetic Ropes.
Master's thesis, Massachussetts Institute of Technology, 1971.

Chen, S. S., Wambsgauss, M. W. and Gendrnejcryk, J. A.

Added Mass and Damping of a Vibrating Rod in a Viscous
Fluid.

Journal of Applied Mechanics, ASME :325-320, June, 1976,

Chhabra, N.K.

Dynamics of a Tethered Spar Buoy System - Validation using
full-scale Ocean Data.

In Civil Engineering in the Oceans, pages 209-223. ASCE,
1979.

Choo, Y. 1. and Casarella, M. 1.
Hydrodynamic Resistance of Towed Cables.
Journal of Hydronauties 5{4), October, 1971.

Choo, Y. 1. and Casarella, M. J.

Configuration of a Tow Line Attached to a Vehicle in a
Circular Path.

Journal of Hydronautics 6(1):51-57, January, 1972,

Choo, Y. 1. and Casareila, M. J.

A Survey of Analytical Methods for Dynamic Simulation of
Cable-Body Systems.

Journa!l of Hydronautics 7(4):137-144, October, 1973.

Chu, T.C.

A Method to Characterize the Mechanical Properties of
Undersea Cables.

The Bell System Technical Journal 62(3):703-715, March, 1983,



-230-

[Collier 72] Collier, M. L.
Dynamic Similarity Secaling Laws Applied to Cables.
Journal of Hydronautics 6(2):111-114, July, 1972.

[Costello 76]  Costello, G. A. and Phillips, J. W.
Effective Modulus of Twisted Wire Cables.
Journal of the Engineering Mechanies Division ASCE
102(EM1);171-181, February, 1976.

[Costello 77a]  Costello, G. A. and Sinha, S. K.
Static Behaviour of Wire Rope.
Journal of the Engineering Mechanics Dimsion ASCE
103(EMS6):1011-1022, December, 1877.

[Costello 77b]  Costello, G. A. and Sipha, S. K.
Torsional Stiffness of Twisted Wire Cables.
Journal of the Engineering Mechanics Division ASCE
103(EN4):766-770, August, 1977.

Costello, G. A. and Miller, R. E.

Lay Effect of Wire Rope.

Journal of the Engineering Mechanies Division ASCE
105(EM4):589-608, August, 1979.

[Costello

=]
=,

[Crandall 56]  Crandall, SH.
Engineering Analysis.
McGraw-Hill, New York, 1956.

[Critescu 64]  Critescu, N,
Rapid Motions of Extensible Strings.
J. Mech. Phys. Solids 12:268-278, 1964,

[Critescu 67]  Critescu, N.
Dynamic Plasticily.
North Holland Publishing Company, Amsterdam, Holland. 1967,
chapter Extensible Strings.

[Dahlquist 74] Dahlquist, G. and Bjork, A.
' Numerical Methods.
Prentice Hall, Englewood Cliffs NI 1974



[Dareing 79|

[Davenport 59

[Davenport 65]

[Dean 61j

[Delmer 83]

[Deruntz 69]

[Dickey 80]

[Dillon 73]

[Dillen 82

-231-

Dareing, D.W. and Huang T.

Marine Riser Vibration Response determined by Modal
Analysis.

Journal of Energy Resources Technology, ASME 101:159-166,
September, 1979.

Davenport, A. G.

The Wind Induced Vibration of Guyed and Self-Supporting
Cylindrical Columns.

Transactions Engineering Institute of Cenada 3:119-141, 1859,

Davenport, A. G. and Steels, G. N.

Dypnamic Behavior of Massive Guy Cables.

Journal of the Structural Division, ASCE 91(ST2)y:43-70, April,
1965.

Dean, D. L.

Static and Dypamic Analysis of Guy Cables.

Journal of the Struclural Division, ASCE 87(ST1):1-21, January,
1961.

Delmer, Th. N. and Stephens, Th.
Numerical Simulation of Towed Cables,
Ocean Engineering 10{2):119-132, 1983

Deruntz, J. A.
End Effect Bending Stresses in Cables.
Journal of Applied Mechanics, ASME :750-756, December, 1869

Dickey,W.
Stability of Periodic Solutions of the Non-Linear String.
Quarterly of Applied Mathematics :253-259, July, 1980.

Dillen, D. B.

An Inventory of Current Models of Scientific Data-Gathering
Moors.

Technical Report 45500001, HCI, 1973.

Pilten, D. B.

Validation of Computer Models of Cable System Dynamics.

Technical Report CR&2.015, Naval Civil Engineering
Laboratory, 1982



-232-

[Dominguez 72] Dominguez, R. F. and Smith, C. E.

{Dubey 78]

[Every 82]

[Felippa 74]

[Firebaugh 72|

[Fried 79a)

[Fried 79b]

[Fried 82]

[Frohrib 67]

Dypamic Analysis of Cable Systems.
Journal of the Structura! Division, ASCE 98(ST8):1817-1834.
August, 1972,

Dubey, R. N.
Vibration of Overhead Transmission Lines.
Shock Vibration Digest 10(4):3-6, 1978.

Every, M. J., King, P. and Weaver, D. S

Vortex-Excited Vibrations of Cylinders and Cables and their
Suppression.

QOcean Engineering 9(2):135-157, 1982.

Felippa, C. A.

F. E. Analysis of 3D Cable Structures.

In Jniernational Conference on Computer Methods in Non-
Linear Mechanics, pages 311-325. University of Texas,
197 4.

Firebaugh, M. 5.
An Analysis of the Dynamics of Towing Cables.
PhD thesis, M.1.T., Department of Ocean Engineering, 1872

Fried, L
Numerical Solutions of Differential Equalions.
Academic Press, New York, 1979, chapter Wave Propagation.

Fried, L
Accuracy of String Element Mass Matrix.
Comput. Methods Appl. Mech. Eng. 20(3):317-321, 1979.

Fried, L

Large Deformation Static and Dynamic Fipite Element Analysis
of Extensible Cables,

Computers and Structures 15(3):315-319, 1982.

Frohrib, D. A. and Plunkett, R.

The Free Vibrations of Stiffened Drill Strings with Static
Curvature.

Journal of Engineering for Industry, ASME :23-30, February,
1967.



[Frosali 79]

[Frost 65]

[Gale 83]

[Gambhir 77|

[Gambhir 78]

[Goeller 70)

[Goodey 61]

[Goodman 76]

[Goodman 79

-233-

Frosali, G. P.

On the Stability of the Dirichlet Problem for the Vibrating
String Equation.

Ann. §C. Norm. Super. Pisa, C1. Sei. 6(4):719-728, 1979,

Frost, M. A. IIl and Wilhoit, J. C. Ir.

Analysis of the Motion of Deep Water Drill Strings - Part 2:
Forced Rolling Motion.

Journal of Engincering for Industry, ASME :145-149, May, 1965.

Gale, J. G. and Smith, C. E.
Vibrations of Suspended Cables.
Journal of Applied Mechanics 50:687-689, September, 1983

Gambbir, M. L. and de Batchelor, B.

A Finite Element for 3D Prestressed Cable Nets.

International Journal for Numerical Methods in Engineering
2:1699-1718, 1977,

Gambhir, M.L. and de Batchelor, B.
Parametric Study of Free Vibrations of Sagged Cables,
Computers and Struclures 8:641-648, 1978.

Goeller, J. E.

Analytic and Experimenlal Study of the Dynamic Response of
Cable Systems.

Technical Report 70-3, Catholic University of America,
Washington, D.C., April, 1970.

Goodey, W. J.
On the Natural Modes and Frequencies of a Suspended Chain.

Quarterly Journal of Mechanics and Applied Mathemalics
14(1):118-127, 1961.

Goodman, T. R. and Breslin, J. P.
Statics and Dynamics of Anchoring Cables in Waves.
Journal of Hydronautics 10{4):113-120, October, 1976.

Goodman, Th. R. and Valentine, D. T.

Effect of Hydrostatic Pressure of Underwater Towed Body
Configurations.

Journal of Hydronautics, Engineering Notes 13, October, 1979,



[Gorban 78]

[Gotlieb 77]

[Graham 65]

[Griffin 73]

[Griffin 80]

[Griffiths 73]

[Hagedorn 80]

-234-

Gorban, V. A. et al

Foreed Oscillations of a Cable in a Fiow.
Gidromechanithe (38):113-118, 1978.

In Russtan.

Gotlieb, D. and Orzag A

Regional Conference Series in Applied Mathemaiica: Numerical
Analysis of Spectral Methods, Theory and Applications.

Society for Industrial and Applied Mathematics, Philadelphia,
1977.

Grabam, R. D., Frost, M. A. TIl and Wilhoit, J. A. Jr.

Analysis of the Motion of Deep-Water Drill Strings - Part 1:
Forced Lateral Motion.

Journal of Engineering for Industry, ASME :137-144, May, 1965,

Griffin, O. M., Skop, R. A. and Koopman, G. H.
The Vortex Excited Resonant Vibrations of Circular Cylinders.
Journal of Sound and Vibration 31(2):235-249, November, 1973.

Griffin, O. M., Pattison, J. H., Skop, R. A., Ramberg,

S. E. and Meggitt, D. 1.

Vortex Excited Vibrations of Marine Cables.

Journal of Waterways, Port, Coastal and Qcean Division, ASCE
106(WW2):183-204, May, 1980.

Griffiths, J. A., Alzheimer, J. M. and Bampton, M. C. C.

Large Displacement Analysis of Cable Structures.

In Bathe {editor), Nonltnear FEM Analysis and ADINA |
M.I.T., August, 1973.

Hagedorn, P. and Shafer, B. .
On Non-Linear Free Vibrations of an Elastic Cable.
International Journal Non-Linear Mechanies 15:333-340, 1980.

[Harichandran 82}

Harichandran, R. S. and Irvine, H M.
A Stalic Analysis Technique for Multi-Leg Cable-Buoy Systems.
Techanical Report SG 82-13, M.LT., July, 1882



[Henghold 76

[Henghold 77]

[Hildebrand 49}

[Hogben 77]

[Hsu 75}

[Hsu 77]

[Huddleston 81)

[Huffman 71]

[Imlay 61]

-235-

Henghold, W. M. and Russell, J. J.

Equilibrium and Natural Frequencies of Cable Structures (a
non-linear finite element approach).

Compulers and Struclures 6:267-271, 1976.

Henghold, W. M., Russetl, J. J. and Morgan, J. D.

Free Vibrations of Cable in 3D.

Journal of the Structural Division, ASCE 103{5T5):1127-1136,
May, 1977.

Hildebrand, F.B.
Advanced Calculus for Applications.
Prentice Hall, Englewcod Cliffs N.J,, 1949.

Hogben, N. N., Miller, B. L., Searle, W. J. and Ward, G.
Estimation of Fluid Loading on Offshore Structures.
Proc. Instn. Civ Engrs. 63:515-562, September, 1977.

Hsu, C. S.
The Response of a Parametrically Excited String in Fluid.
Journal of Sound and Vibration 39(3):305-316, 1975.

Hsu, C.S.

On Non-linear Parametric Excitation Problems.

In Yik, C.S. {editor), Advances in Applied Mechanics, pages
245-301. Academic Press, New York, 1677.

Huddleston, J. V.

Computer Analysis of Extensible Cables.

Journal of Engineering Mechanics Division, ASCE :27-37,
February, 1981.

Huffman, R. R. and Genin, J.

The Dynamical Behaviour of a Flexible Cable in a Uniform
Flow Field.

Aeronautical Quarterly 22:183-185, May, 1871.

Imiay, F. H.

The Complete Expressions for ‘Added Mass' of a Rigid Body
Moving in an Ideal Fluid.

Technical Report 1528, DTMB, July, 1961.



[Irvine 74]
{Irvine 75]

[Irvine 76

{Irvine 78]

[Irvine 80a]

{Irvine 80bj

{Irvine 81)
[Jefferys 82a]

[Jefferys 82b]

-236-

Irvine, H. M. and Caugbey, T. K.
The Linear Theory of Free Vibrations of a Suspended Cable.
Proceedings of the Royal Society Series A 341:289-315, 1974.

Irvine, H. M.
Statics of Suspended Cables.
Journal of Engineering, Mechanica Division, ASCE , June, 1975.

Irvine, H. M. and Griffin, J. H.

On the Dynamic Response of a Suspended Cable.

Earthquake Engineering and Structural Dynamics 4:389-402,
1976.

Irvine, H. M.

Free Vibrations of Inclined Cables.

Journal of the Structural Division, ASCE 104(ST2):343-347,
February, 1978.

Irvine, H. M.

The Estimation of Earthquake Generated Additional Tension in
Suspension Bridge Cable.

Earthquake Engineering and Structural Dynamics 8:267-273,
1980.

Irvine, H. M.

Energy Relations for Suspended Cables.

Quarterly Journal of Mechanics and Applied Mothemalics
33:227-234, 1980.

Irvine, H. M.
Cable Structures.
MIT Press, Cambridge, MA and London, England, 1981.

Jefferys, E. R. and Patel, M. M.
Dynamic Analysis Models of Tension Leg Platforms.
Journal of Energy Resources Technology 104, September, 1982

Jetferys, ER. and Patel, M.M.
Op the Dynamics of Taut Mooring Systems.
Engineering Structures 4:37-43, January, 1982.



-237-

|Johansson 76] Johansson, P.1.
A Finite Element Model for Dynamic Analysis of Mooring
Cables.
PhD thesis, MIT, 1876,

[Jones 82| Jones, H. L. and Nelson, J. K.
Optimum Design of Spread Mooring Systems.
Journal of Energy Resource Technology, ASME 104, March,
1982,

[Judd 78] Judd, B. J. and Whees, R. J.
Non-Linear Cable Behaviour.
Journal of Struclural Division, ASCE :567-575, March, 1978.

[Kasper 73] Kasper, R. G.
Cable Design Guidelines Bosed on a Bending, Tension and
Torsion Study of an Electromechanical Cablc.
Technical Report AD769212, Naval Underwater Systems
Center, Distributed by National Technical Information
Service, 1973.

[Kern 77] Kern, E. C., Milgram, J. H. and Lincoln W. B.
Experimental Determination of the Dynamics of a Mooring
System.

Journal of Hydronautics 11(4):113-120, October, 1977.

[Kerney 71] Kerney, K. P.
Small Perturbation Analysis of Oscillatory Tow-Cable Molion.
Technical Report 3430, NSRDC, November, 1971.

[Kim 83] Kim, Y.C.
Nonlinear Vibrations of Long Slender Beams.
PhD thesis, MIT, 1983.

[Kirk 79] Kirk, C.L., Etok, EU. and Cooper, T.M.
Dynamic and Static Analysis of Marine Riser.
Applied Ocean Research 1, 1979.

[Kolousek 47| Kolousek, V.
Solution Statique et Dynamique des Pylones d‘antenne
Haubanes.

International Association of Bridge and Structural Engineers 8,
1947,



-238-

{Krolikowski 80] Krolikowski, L. P. and Gay, T. A.

[Lang 79]

[Larsen 82

[Laura 69]

(Lehner 73]

[Lenskii 78]

{Leonard 72a]

{Leonard 72b}

An Improved Linpearization Technique for Frequency Domain
Riser Amnalysis.
Offshore Technology Conference (OTC 3777), 1980.

Lang, J. R. and Hedley, C. J.

BP Development of Tethered Buoyant Platform Production
System.

In North Sea Development, pages 133-144. Heyden Publisher,
Glasgow, 1979.

Larsen, C. M. and Fylling, I. J.
Dynamic Behaviour of Anchor Lines.
Norwegian Maritime Research (3), 1982,

Laura, P.A., Goeller J.

Dynamic Stresses and Displacements in a Buoy Cable System
Subjected to Longitudinal Excitation using a Continuum
Approach.

In Acoustical Society Meeting. Acoustical Society, Philadephia,
April, 1969.

Lehner, J. R. and Batterman, S. C.

Static and Dvnamic Finite Deformations of Cables using Rate
Equations.

Computer Methods in Appiied Mechanics and Engineering
2:343-366, 1973.

Lenskii, E. V.

Motion of Flexible Strings in an ldeal Liquid.

Vestnik Moskovskogo Universiteta Mekhanika 33(1):116-127, 1978.
[n Russian, translation Alterton Press 1878.

Leonard, J. W.
Curved Finite Element Approximation to Non-Linear Cables.
Ojfshore Technology Conference (OTC 1533):225-233, 1972.

Leonard, J. W. ard Recker, W. W.

Nonlinear Dynamics of Cables with Low Initial Tension.

Journal of the Engineering Mechanics Diuision, ASCE
98({EM2):203-309, Aprnil, 1872



-239-

[Leonard 73a] Leonard, J. W.
Nonlinear Dynamics of Curved Cable Elements.
Journal of the Engineering Meckanics Division, ASCE
99(EM3):616-621, June, 1673.

[Leonard 73b] Leonsrd, J. W.
Incremental Response of 3-D Cable Networks.
Journal of the Engineering Mechanics Division, ASCE
99{EM3}:616-618, June, 1973.

[Leonard 79]  Leonard, J.W.
Newton-Raphson Iterative Method applied to Circularly Towed
Cable-body Systems.
Engineering Structures 1:73-80, January, 1979.

[Leonard 81]  Leonard, J. W. and Nath, J. H.
Comparison of Finite Element and Lumped Parameter Methods
for Oceanic Cables.
Engineering Structures 3(3):153-167, July, 1981.

[Lighthill 60)  Lighthill, M. J.
Note on the Swimming of Slender Fish.
Journal of Fluid Mechanies 9:305-317, 1960.

{Liu 73] Liu, F. C.
Snap Loada in Lifling and Mooring Cable Systems Induced by
Surface Wave Conditions.
Technical Report 1288, Naval Civil Engineering Lab.,
September, 1973.

[Liu 75} Liu, F. C.
FRotational and Kinking Characteristics of Electromechanical
Cable.

Technical Report 1403, Naval Civil Engineering Lab.,
November, 1975.

[Liu 80] Liu, D. and Chen, C. Y,
Integrated Computational Procedure for Hydrodynamic Loads
and Structural Response of 2 TLP.

In Computational Methods for Offshore Structures. Chicago,
[linois, November, 1980.



-240-

[Liu 82] Liu, F. C.
Computer Simulation of a Tethered Vebicle Cable System.
In Proceedings of the 1st Offshore Mechanics/Arctic Engineering
Deep Sea Systems, pages 163-173. 1982,

[Lo 82] Lo, A and Leopard, J. W.
Dyoamic Analysis of Underwater Cables.
Journal of the Engineering Mechanics Division, ASCE
108{EM4):605-621, August, 1882,

[Loken 79} Loken, A. E. and Olsen, O. A.
The Influence of Slowly Varying Wave Forces on Mooting

Systems.
Offshore Technology Conference (OTC 3626), 1979,

[Lubinski 50}  Lubinski, A.
A Study on the Buckling of Rotary Drilling Strings.
In Drilling and Production Practice, pages 178-. API, 1950.

[Lubkin 43 Lubkin, S. and Stoker, J. J.
Stability of Columns and Strings under Periodically Varying
Forces,
Quarterly Journal of Applied Mathematics 1:215-236, 1943.

Ma 79] Ma, D., Leonard, J. and Chu, K. H.
Stack Elasto-Plastic Dynamies of Cable Systems.
Journal of the Engineering Mechanics Division, ASCE
105(EM2):207-222, April, 1979.

[Maier 75} Maijer, G. and Goutro, R.
Energy Approach to an Inelastic Cable-Structure Analysis.
Journal of the Engineering Mechanics Division, ASCE .
October, 1975.

{Marczyk 79]  Marczyk, S. and Niziol, J.
Longitudinal-Transversal Vibrations of Ropes of Variable
Lengths.
Rozpr. Inz. 27(32):403-415, 1979.

(Meggitt 80]  Meggitt, D. J., Webster, R. L. and Migliore, S. 1.
Dynamic Response of Cables Subject to Ocean Forces.
Offshore Technology Conference 1980.



[Mites 65)

[Murthy 65]

[Narasimha 68]

|Nath 69a}

[Nath 69b]

[Nath 71]

[Nath 79]

-

[Nayfeh 73]

[Nayleh 79]

-241-

Miles, J. W,
Stability of Forced Oscillations of a Vibrating String.
Journal of the Acoustical Society of America 38:855-861, 1965.

Murthy, G.S.S. and Ramakrishna.
Nonlinear Character of Resonance in Stretched Strings.
Journal of the Acoustical Society of America 38:461-471, 1965.

Narasimha, R.
Non-Linear Vibrations of an Elastic String.
Journal of Sound and Vibration 8:134-146, 1868.

Nath, J. H.

Dynamics of a Single Poinl Ocean-Moerings of a Buoy - A4
Numerical Model for Solution by Compuler.

Technical Report 69-10, Oregon State University, Department
of Oceanography, July, 1069,

Nath, J. H. and Felix, H. P.

Dypamics of a Single Point Mooring in Deep Water.

In Proceedings Conference on Civil Engineering in the Oceans.
Miami Beach, Florida, December, 1969.

Nath, J. H.
Dynamic Response of Taut Lines for Buoys.
Marine Technology Society Jowrnal 5, July-August, 1971.

Nath, J. H. and Leonard, J. W.

Continum, Lumped Parameter and Finite Element Methods for
Flezible Tether Analysts.

Technical Report F320-4, U.S. Department of Commerce,
N.O.AA., 1879,

Nayfeh, AM.
Perturbation Methods.
John Wiley & Sons, New York, 1973.

Navfeh, A. M. and Hook, D. T.
Non-Linear Oscillations.
John Wiley & Sons, New York, 1979, chapter Strings.



-242

[Nordstrom 82] Nordstrom, P.E. and Ottsen, H.
Test Cases for Seadyn Verification.
Technical Report CR82.014, Navy Civil Engineering
Laboratory, April, 1082

[Nuckolls 77]  Nuckolls, C. and Dominguez, R. F.
Large Displacement Mooring Dynamics.
Offshore Technology Conference (OTC 2880):18-24, 1977

[Olsen 79] Olsen, O. A. and Loken, A. E.
On the Effect of Non-Linearities in Mooring System Design.
In G. S. T. Azmer and F. K. Gerres (editors), Ojfshore
Siructures: The Use of Physical Models in their Design. .
Construction Press, 1879,

[Oplinger 60]  Oplinger, D. W.
Frequency Respopse of & Nonlinear Stretched String.
Journal of the Acoustic Sociely of Americg 32(12):1528-1538,
December, 1960,

[Ozdemir 79)  Ozdemir, H.
A Finite Element Approach for Cable Problems.
International Journal Solids Structures 15:427-437, 1979.

[Paidoussis 68] Paidoussis, M. P.
Stability of Towed Totally Submerged Flexible Cylinders.
Journal of Fluid Mechanics 34(2):273-297, 1968.

[Paidoussis 70] Paidoussis, M. P.
Dynamics of Submerged Towed Cylinders.
In Eighi Symposium of Naval Hydrodynamics in an Ocean
Environment. 1970.

[Palo 79] Palo, P. A.
Small-Scale Cable Dynamics Comparison.
In Civil Engineering Conference in the Oceans, pages 203-309.

1979.

[Paquette 63]  Paquette, R. G. and Henderson, B. E.
The Dynamics of a Simple Deep Sea Buoy Moorings.
Technical Report 65-79, General Motors Defense Reserve
Laboratories, November, 1965.



[Parnell 80]

[Patel 75

[Paulling 79a]

[Paulling 79b]

[Pedersen 77

[Peyrot 73]

[Peyrot 80]

[Phillips 48]

-243-

Parpell, L. A,

Esperimental Scale Modeling of Large Undersea Cable
Structures.

In Oceans ‘80, pages 541-547. 1980.

Patel, J. S.

Dynamic Response of a Line Cable with Variable Length End
Segment due to Time Dependent Kinematic Constraints.
Technical Report EM-83-75, Naval Underwater System Center,

Qctober, 1975.

Paulling, J.R.

Frequency Domain Analysis of OTEC CW Pipe and Platform
Dynamics.

Offshore Technology Conference (OTC 3543), 1979.

Paulling, J. R. -

An Equivalent Linear Representation of the Forces Exerted on
the OTEC CW Pipe by Combined Effects of Waves and
Current.

In Griffin and Giannotti {editors), Ocean Engineering for
OTEC. ASME, 1979.

Pedersen, P.T.

Comment on Statics and Dynamics of Anchoring Cables in
Waves.

Journal of Hydronautics 11(4):112, October, 1977.

Peyrot, A. H. and Goulois, A. M.
Analysis of Cable Structures.
Computer and Structures 10:805-813, 1973.

Peyrot, A. H.
Marine Cable Structures.

Journal of Structural Division, ASCE :2301-2404, December,
1980.

Phillips, W. R.
Theoretical Anclysis of Oscillation of a Towed Cable.
Technical Report 1796, NACA, 1949.



-244-

[Plunkett 76]  Flunkett, R.
Static Bending Stresses in Catenaries 2nd Drill Strings.
Journal of Engineering for Industry, ASME :31-36, February
1976. .

[Polachek 63] Polachek, H, Walton, T. 5., Mejia, R. and Dawson, C.
Transient Motion of an Elastic Cable Immersed in a Fluid.
Mathematics of Compulation :60-63, January, 1963.

[Poskitt 64] Poskitt, T. I
The Free Oscillations of Suspended Cables.
The Structural Engineer 42(10), October, 1964.

[Pugsley 49] Pugsley, A. G.
On the Natural Frequencies of Suspension Chains.
Quarterly Journal of Mechanics and Applied Mathemalics
9(4):412-418, 1949.

{Pugsley 68] Pugsley, A.
The Theory of Suspension Bridges.
E. Arnold Ltd., London, 1968.

[Pugsley 83 Pugsley, A.
The Nonlinear Behavior of & Suspended Cable.
Quarterly Journal of Mechanies and Applied Mathematies

36(2):157-162, 1983,

[Ramberg 75] Ramberg. 8. E., Griffin, O. M. and Skop, R. A
Some Resonant Vibration Properties of Marine Cables with
Application to the Prediction of Vortex-Induced Vibrations.
In Ocean Engineering Mechanics. Houston, Texas, December,
1975.

[Ramberg 77] Ramberg, S. E. and Griffin, O. M.
Free Vibrations of Taut and Slack Marine Cables.
Journal of the Structural Division, ASCE 103(ST11):2079-2092,
November, 1977.

[Ramberg 81] Ramberg, S. E. and Griffin, O.M,
Hydroelastic Response of Marine Cables and Risers.
In Hydrodynamics in Ocean Enginecring, pages 1223-1245.
Norwegian Institute of Technology, 1981



[Ramberg 82]

[Rannie 41]

[Relf 17]

[Richard 83]

[Rohrs 51]

[Rosenthal 80)
[Rosenthal 81]

[Roussel 76|

[Routh 55]

-245-

Rambert, S. E. and Bartholomew, C. L.

Vibrations of Inclined Slack Cables.

Journal of the Structural Division. ASCE 108(ST7):1662-1664,
July, 1982

Rannie, W. D.
The Failure of the Tacoma Nerrows Bridge.
Technical Report, Federal Works Agency, 1941.

Relf, E. F. and Powell, C. H.

Teals on Smooth and Stranded Wires Inclined to the Wind
Direction and ¢ Comparison of Resulls on Stranded Wires in
Air and Waler.

Technical Report 307, British Aeronautical Research
Comrmittee, January, 1917.

Richard, K. and Anand, G. V.

Non-Linear Resonance in Strings under Narrow-Band Random
Excitation.

Journal of Sound and Vibration 86(1):85-98, 1983.

Robrs, §. H.

On the Oscillation of a Suspension Chain.

Transactions of the Cambridge Philosophical Soctety 9:307-398,
1851.

Rosenthal, F. and Skop, R. A.
Guyed Towers under Arbitrary Loads.
Journal of Struelural Division, ASCE (ST3), March, 1980.

Rosenthal, F.
Vibrations of Slack Cables with Discrete Masses.
Journal of Sound end Vibratron 78:573-583, 1981.

Roussel, P.
Numerical Solution of Static and Dynamic Equations of Cables.

Computer Methods in Applied Mechanics and Engineering
9:65-74, 1976.

Routh, E. J.
Dynemics of a Syslem of Rigid Bodies.
Dover, New York, New York, 1955.



[Russel 78]

[Samras 73]

[Sander 74]

[Sarpkaya 76]

[Sarpkaya 78]

[Sarpkaya 81]

[Saxon 53]

[Schram 68}

~246-

Russel, J. J., Morgan, J. D. and Henghold, W. M.
Cable Equilibrium and Stability in Steady Wind.
Journal of Structural Division, ASCE :301-312, February, 1975,

Samras, R. K., Skop, R. A. and Milburn, D. A.

An Analysis of Coupled Extensional-Torsional Oscillations of
Wire Rope.

In Winter Annual Meeling. ASME, Detroit, Michigap,
November, 1973.

Sander, G. et al.

Accuracy versus Computational Efficiency in N. L. Dynamics.

Computer Methods in Applied Mechanics and Engineering
17-18:315-340, 1974.

Sarpkaya, T.

Vorter Shedding and Resistance in Harmonie Flow about
Smooth Stationary aend Transverse Qscillating Cylinders.
Technical Report NPS69SL79011, Naval Postgraduate School,

February, 1976.

Sarpkaya, T.
Fluid Forces on Oscillating Cylinders.
The Journal of Waterway, Porl, Coastal and Ocean Division

104(WW4), August, 1978.

Sarpkaya, T. and [saacson, M.
Mechanies of Wave Forces on Offshore Structures.
Van Nostrand Reinhold, New York, 1981,

Saxon, D. S. and Cahn, A. S. .

Modes of Vibration of Suspension Chain.

Quarlerly Journal of Mechanics and Applied Afathematics
6:273-285, 1953.

Schram, J. W. and Reyle, 5. P.
A 3-D Dynamic Analysis of a Towed System.
Journal of Hydronautics 2(4):213-220, October, 1968



-247-

[Sidiripoulos 79} Sidiripoulos, E and Muga, B. 1

[Simpson 66]

{Simpson 72a]

[Simpson 72b}

[Skop 70]

[Skop 72

[Skop 77]

[Skop 79

[Smith 73]

Response Statistics of Cable Array Systems in an Ocean
Environment.

In Civit Enginecring in the Oceans, pages 308-321. ASCE,
1979.

Simpson, A.

Determination of the In-Plane Natural Frequencies of
Multispan Transmission Lines by a Transfer Matrix Method.

Procecdings IEE 113(5), May, 1966.

Simpson, A.
On the Oscillatory Motions of Translating Elastic Cables.
Journal of Sound and Vibralion 20(2):177-189, 1972

Simpson, A.

Determination of the Natural Frequencies of Multiconductor
Overhead Transmission Lines.

Journal of Sound and Vibration 20(4):417-449, 1972.

Skop, R. A. and O'Hara, G. J.
The Method of Imaginary Reactions.
Marine Technology Society Journal , January-February, 1970.

Skop, R.A.

A Method for the Analysis of Internally Redundant Structural
Cable Arrays.

Marine Technology Sociely Journal 6, January-February, 1972,

Skop, R. A., Griffin, O. M. and Ramberg, S. E.

Strumming Predictions for the SeaCon 1l Experimental
Mooring.

Offshore Technology Conference (OTC 2884}, 1977.

Skop, R. A.

Cable Spring Constants for Guyed Tower Analysis.

Journal of the Struetural Division, ASCE 105(ST7):1307-1318,
1979.

Smith, C. E. aed Thompson, R. S.
The Small Oscillations of a Suspended Flexible Line.
Journal of Applied Mechanics 40:624-626, 1973.



[Smith 74]

[Soler 70a]

[Soler 70b)

[Spanos 80]

[Suhara 80)

[Subara 81])

[Sullivan 80]

[Syed 74]

[Tabarrok 74}

-248-

Smith, C. E., Yamamoto, T. and Nath, J.
Longitudinal Vibrations in Taut Line Moorings.
Marine Technology Sociely Journal 8(5), June, 1974.

Soler, A. 1. and Afshan, H.

On Analysis of Cable Network Vibrations using Galerkin's
Method.

Journal of Applied Mechanics, Series E 37(3):606-611,
September, 1970.

Soler, A. L
Dypamic Response of Single Cables with Initial Sag.
Journal of Franklin Institute 290(4):377-387, October, 1970.

Spanos, P. T. and Chen, T. W,
Vibrations of Marine Riser Systems.
Journal of Energy Resources Technology, ASME 102:203-213,

December, 1980.

Suhara, T. et al
Behavior and Tension of Oscillating Chaipr in Water.
Japanese Society of Navel Architects Japan 148:89-101, 1930,

Subara, T. et al
Dynamic Behavior and Tension of Oscillating Mooring Chain.

Offshore Technology Conference (OTC 4053):415-418, 1981.

Sullivan, B. J. and Batterman, S. C.

Nonlinear Static and Dynamic Deformations of Viscoelastic
Cables.

Journal of the Engineering Mechanscs Division, ASCE
106(EM3):543, June, 1980.

Syed, A. and Shore, S.

Forced N. L. Vibrations of Sagged Cables.

In Computational Methods in N. L. Mechanics, pages 325-337.
University of Texas, 1974.

Tabarrok, B., Leech, CM. and Kim, Y.l
On the Dynamics of an Axially Moving Beam.
Journal of the Franklin Institute 207(3):201-220, March, 1674



-249-

[Tagata 83] Tagata, G.
A Parametrically Driven Harmonic Amalysis of a Non-Linear
Stretched String with Time Varying Length.
Journal of Sound and Vibration 87{3):493-511, 1983.

[Triantafyllou 80a]
Triantafyllou, M. S.
Mooring Lines
1680.
Class Notes.

[Triantafyliou 80b]
Triantafyllou, M. S. and Salter, R.
The Design of the Mooring Syalem for a Tethered Current
Water.
Technical Report, Seagrant MIT, April, 1880.

[Triantafytiou 82a]
Triantalyllou, M. 5.
Preliminary Design of Mooring Systems.
Journal of Ship Research 26{1):25-35, March, 1982.

{Triantafyllou 82b]
Triantafyllou, M. S. and Bliek, A.
Dynamic Analysis of Mooring Lines Using Perturbation
Techniques.
In Proceedings OCEANS ‘82, pages 496-501. Washington,
D.C., September, 1982,

[Triantafyllou 82¢]
Triantafyllou, M. S., Kardomateas, G. and Bliek, A.
The Statics and Dynamics of the Mooring Lines of a Guyed
Tower for Design Applications.
In C. Chryssostomidis and J. J. Connor (editors), Proceedings
of BOSS ‘82, Hemisphere Publishbing Company,
Washington, August, 1982

[Triantafyllou 83a]
. TriantafyBlou, M. S. and Bliek, A.

The Dynamics of Inclined Taut and Slack Marine Cables.

Proceedings Offshore Technology Conference {(OTC
4498):469-476, 1983.



-250-

[Triantafyllou 83b]
Triantafyllou, M. S., Kim, Y. C. and Bliek, A.
The Dynamics of the Mooring Legs of a Teasion Leg Platform.
In Proceedings Second Offshore Mechanics and Arctic
Engineering Symposium. Houston, Texas, January-February,
1983.

[Triantafyllou 84]
Triantafyllou, M. S,
The Dynamics of Taut Inclined Cables.
Quarterly Journal of Mechanics and Applied Mathematics
37(3):422-440, 1984

[Van Oortmerssen T6]
Van Oortmerssen, G.
The Motions of Moored Ships 7n Waves.
Technical Report 510, N.S.M.B., Wageningen, 1676

[Vaughan 78] Vaughan, H.
Effect of Stretch on Wavespeed in Rubberlike Materials.

Quarterly Journal of Mechanics and Applied Mathematies
:215-231, 18978.

[Veletsos 82]  Veletsos, A. S. and Darbre, G. R.
Free Vibrations of Parabolic Cables.
Technical Report 23, Rice University, Department of Civil
Engineering, March, 1982.

[Verley 82] Verley, R. L. P.
A Simple Model of Vortex Induced Forces in Waves and
Oscillatory Currents.
Applied Otean Rescarch (4), 1982.

[Wadsworth 82] Wadsworth, J. F. IIL
A compendium of Tension Member Properties for Input to

Cable Structural Anaolysis.
Technica! Report CR82.017, Navy Civil Engineering
Laboratory, April, 1982.

[Walton 59] Walton, T. S. and Polachek, H.
Caleulation of Noniinear Transient Motion of Cables.

Technical Report 1279, David Taylor Basin Report, July. 1859,



[Walton 60]

[Walton 69}

[Watts 81)

[Webster

[Webster

{Webster

[Webster

[Webster

[West 68]

75)

79}

82a]

82b)

82c]

-251-

Walton, T. S. and Polachek, H.
Caleulation of Transient Motion of Submerged Cables.
Mathematical Tables and Ards to Computation 14:27-60, 1960.

Walton, T. S. and Polachek, H.
Caleulation of Transient Motion of Submerged Cables.
Mathematics of Computation 14(69):27-48, 1969.

Watts, A. M. and Frith, R. H.

Efficient Numerical Solution of the Dynamic Equations of
Cables.

Compuler Methods in Applied Mechanics and Engineering 25:1-9,
1981.

Webster, R.L.

Non-Linear Static and Dynamic Response of Underwater Cable
Structures using FEM.

Offshore Technology Conference (OTC 2322).754-762, 1975.

Webster, R. L.
Analysis of Deep Sea Moor and Cable Structures.
Offshore Technology Conference (OTC 3623):2299-2306, 1979

Webster, R. L. and Palo, P. A.
Seadyn User's Manual.

Technical Report TN 1630, Navy Civil Engineering Laboratory,
April, 1982.

Webster, R. L.

Seadyn Mathematical Models.

Technical Report CR82.019, Navy Civil Engineering
Laberatory, April, 1982,

Webster, R. L.

Seadyn: Programmer’s Reference Manual.

Technical Report CR82.018, Navy Civil Engineering
Laboratory, April, 1982,

West, H. H. and Robinson, A. R.
Continuous Method of Suspension Bridge Analysis.

Journal of the Structural Division, ASCE 94:2861-2883,
December, 1968,



[West 73]

[West 73]

[Whitham 74}

[Wilhelmy 81]

[Wilson 67)

[Winget 76]

[Yakimov 70|

[Yamaguchi 79]

-252-

West, H. H. and Caramanico, D. L.

Initial Value Discrete Suspension Bridge Analysis.

International Journal of Solids and Structures $:1087-1105,
September, 1973.

West, H. H., Geschwindner, L. F. and Suboski, J. E.

Natural Vibrations of Suspended Bridges.

Journal of the Struetural Division, ASCE 101{ST11):2277-2291,
November, 1975.

Whitham, G.B.

Linear and Non-Linear Waves.

John Wiley & Soms, New York, 1974, chapter Hyperbolic
Systems.

Wilhelmy, Fjeld and Schneider.

Non-Linear Response Analysis of Anchorage Systems for Deep
Water Platforms.

Offshore Technology Conference (OTC 4051}, 1981.

Wilson, B. W.
Elastic Characteristics of Moorings.
Journal of the Waterways and Harbors Division, ASCE 93.27-56,

November, 1967.

Winget, J. M. and Huston, R. L.
Cable Dynamics - A Finite Segment Approach.
Computers and Struclures 6:475-489, 1076.

Yakimov, Y. L.

Motion of a Cylinder in Arbitrary Planar Ideal Incompressible
Fiuid Flow.

IZV. AN 5SSR, Mekhanika Zhidkosti ¢ Gaza 5(2):202-204,
March-April, 1970.

In Russian, translation Plenum Publishing Company 1972

Yamaguchi, H. and Ito, H.

Linear Theory of Free Vibrations of an Inclined Cable in
Three Dimensions.

Proceedings Japanese Society of Civil Engineers (286):29-36,
June, 1979,

In Japapese, Summary in English, Transactions Japanese
Society of Civil Engineers 1978.



