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Introductioa

final report of a research effort conducted at the Ocean

Engineering Department at M.I.T., supported joint]y by the Sea Grant Program,

NAVSEA and a consortium of offshore companies consisting of

Conoco Inc.

Exxon Production Research Company

Gulf Oil Exp!oration and Production Company

Vorsk-Hy dro

Mobil Research and Development Corporation

Shell Development Company

The purpose of the research was to study the dynamics of a single mooring line
under conditions expected in a marine application, The discovery of some basic

linear dynamic properties of cables was the principal reason for this study, which
investigated the effect of the principal non-linearities on linear predic tions. The
equivalent ljnearjzatjon of nonlinear terms was also addressed as a means for
reducing the computational complexity for assessing cable dynamic properties,

The interest in this project stems from the fact that deep water applications

for rnoorjng systems have been proposed for unplementation in the near future, or
have already been made  up to more than 2000 ft! in some instances.

The pr inc jpaj d ifference in deep water applications from prev ious mooring
jnstai]atjons is that the natural frequencies of the lines lie within the wave spectrum

dynamjc amplification is e'xpected. At the same time an increase in pretension



is required due to the increased self-weight of the liae as the line length increases,
this reducing the available Inargin for dynamic effects,

The priacipal non-linearity for vibrating cables ia water is the fiuid drag, with

the exception of vortex-induced osciHatioas. This was confirmed ia this study,

although other parameters enter such as the elastic stiffness-to-catenary stiffness

ratio, which affect tbe dynamic performance also. An outline of the numerical

results found for specific applicatioas illustrates the effects of the principal

parameters {see part H!.

The effect and linearization of the cable bottom interaction is a aovel issue for

cable dynamic studies, a/though most lines used for raooring offshore structures

exhibit such an interaction. This study addressed the problem with the purpose of

gaining insight into the principal mechanism of interactioa aad a 4aearizatioa

procedure has been derived, A method to couple the dynamics of several mooring

lines was also developed, based on the principle of dynamic impedance,

The problem of snap loading for a taut horizontal cable was addressed. Such

a development for a curved cable is novel, because it accounts for all tbe properties

recently discovered for cable dynamics. Traveling stress waves can be properly

simulated with the aew method. The numerical applications can be found ia part 0
of the report.

Tbe authors wisb to acknowledge the support of the office of Sea Grant,
NAVSEA and of the participating companies named in the beginning of the
introduction. They are also iadebted to the representatives of NAVSEA and the
offshore companies who discussed the progress of the report, offered suggestions and
shared their experience aad information that was available to them: Mr-
G. Prentice of NAVSEA; Drs Pejaver and W.C.Kan of Exxon Messrs, P.Erb
RVermeir and P.Wybro of Conoco; Dr. C.G.Caracostis of Shell Development



Company, Mr. P.O.Verlo of Norsk Hydro; Mr. T.Torsoy ol' Mobil Research and

Development Corporation; and Mr. C.Barton of Gulf Oil Exploration and

Production Company.



-16-

Chapter 1

THREE DIMENSIONAL EQUATIONS

OF CABLE DYNAMICS

1.1 Introduction

Three dimensional cable dynamics can be studied in several coordinate

systems, Critescu used a Cartesian coordinate system to study the motions ol'

extensible cables [Critescu 67]. The fundamental dynamic properties of cables

are better analysed in the so called natural coordinates of a cable, which are

fixed on the cable. The cable coordinate system is, therefore, varying both in

time and space. Another advantage of this system is that the fluid forces can

be described easily. In chapter 3, we will show that this description leads to

analytical solutions of the linearised cable dynamic equations,

A derivation of the three dtmensional equations in natural coordinates has

been done by Lenskii [Lenskii 78]. Cannon and Genin [Cannon 7"aj derive the

equations directly in terms of the velocities and angular rotations. Barr [Barr

74] obtained equations of rnot,ion in two dimensions, starting from a more

general formulation, which includes bending effects. A study on the treatment

of the hydrodynamic forces on cables can be found in [Breslin 7]j

a,nd [Goodman 76].



-17-

1.2 Kinematics in Three Dimensions

Ke consider the cable idealized as a single curvilinear line. M'e define a

certain material point on the cable as the origin and a, certain direction as

positive along the cable. For example, we will usually fix the origin at.  he

lower end of a marine cable and the positive direction will be from the lower

towards the upper cable end,

The cable is made of an elastic material, so it is extensible. As a result,

th» distance b»tween two material points will vary depending on the state of

stretching. Let s denote the unstretched distance of a material point from the

origin and p s,t! the stretched distance of the same point at a certain time, t.

Botb s and p are I.angrangian coordinates of the material point.

The cable configuration, i.e. the shape of the idealized line is a

continuous function of time and of the coordinates s  or p!, Each materia!
point can be described by its distance from the origin of a, cartesian system
 x, y, z!, i,e.

x s,t!

y s,t!

z s,t!

ln order to account properly for the fluid forces, though, we will employ
a different description system, which introduces a certain degree of complexity,
so jt is worthwhile establishing a few basic properties, which we can recall
systematically in subsequent sections,

The system t, n b: l'Ve d f''e efine a tangential unit vector t, at a certain
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point A of the cable configurat,ion. The vector AC, where C is another point

on the cable, has a limiting posit ion as C tends towards A, w hich is t he

tangent direction  provided the cable configuration does not form an angle at

the point A, in which case there are two tangents, one from the left and one

from the right.!.

Vext we define a normal unit vector n at point A: We pick a point B

to the left. of A and a point C to the right of A  both B and C lie on the

cable configuration!, 6'e form two planes, one perpendicular to AC and

passing through the middle point of AC, and a similar plane for AD The two

planes cross along a line whose shortest distance from A is A%3. The limit

position of AM, as B and C tend to A, define the normal direction  see figure

l-l!, which is perpendicular to the tangential direction, The limit. distance Ahj

denoted by p is called the radius of curvature.

Finally, we define the binormal unit vector b such that the system of

vectors  t, n, b! is orthogonal and right-handed.

Since t he con figur ation changes both with time and along the cable

length, all three vectors are functions of t and p  or s!, i,e.:

t  t p!

n  tp!

b  t,p!

Strain e, A segment of the cable with unstretched length bs has at a

certain time length 6p. %e define the longitudinal strain e as;
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Figure 1-I: Definition of the Natural Coordinate System



As a result of stretching, the cross sectional area of the cable changes

also, something that. wil! be discussed later.

The position of t varies along p according to the~Chan es in a~ace:

Vrenet relations, IHildebrand 49j:

Bt 1
� = � n

Bp p

where p is the radius of curvature and r the radius of torsion. The

notation

which is obtained by subtracting the unit vector

vector t  t,p+dp!, divided by dp, as dp ~ 0.

We rewrite the above relations in terms of the unstretched coordinate s,

using the relation dp = �+e!ds:

On 1+e 1+e
� = � b- t
Os 7 p

Bb 1
� =--n

Op r

On 1 1
� =-b- � t

Op T p

indicates the vector

t  t,p! from the unit.

Ot 1+e
n

IPs p

Bb 1+e
n

Os T

Bt

Op



as p/�+e!, and r as rJ l+e! These are the curvature

and the torsion in the unstretc bed coordinate s. The subscript s will be

emitted in the sequel, while p and r wil denote tbe unstretched quantities.

Next we define tbe Darboux vector 0:

{1.4!

B,=o
1

3
P

varies along the length of the cable and let its coordinates be F>, F�, F3, i.e.

F = F>t + F�n + F3b �.5}

Then the derivative of' F in the  t,, n, b! system denoted as

[,�,] ,.. 
becomes quite complex because in addition to the change of' F>, F F3
we must account. for the rotation of the system  t, n, b! aiong the cable
length. To simplify the notation, we denote:

DF DF

{t, a,b} �.6!

We will thea prove that

which is a mathematical fabrication to facilitate operations involving
spatia] derivatives in the  t, n, b! system. Let F  t,s! denote a vector which
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where

l.3 Cable Dynaraica

We define a velocity of a point on a the cable as:

v = v>t + v�n + v>b2 � g!

Newton's law can be written l'or an element with unstretched length ds

and stretched length dp as:

Dv

m de=+ F,dp
Dt 1 0

�.10!

where m is the mass per unit length in the instretched coordinate and F

the force per unit length ou the cable.

Dv
m � = Q F;�+e!

o
�. 11!

The equation is rewritten using �.8!:

gv
m, � + ~xv =Q F,.�+e!

Bt i=0 � 12!

explicitly this is written as;



Bvi n

e .<e + ve~�� Q F,,�+e!
i=0

BVq a

m � � eeee + v v � Q F,�+e!Bt 1 3i ni
i=0

Ov3 0
� - vere + v�~ ! = Q F .�+e!

bi
i=0

Equation �,12! is the equation of motion for a, cable expressed in the

natural coordinate system.

1.4 Compatibility Relations

Compatibility relations can be formulated directly in terms of

displacements, or they can be formulated in terms of velocities. The two

formulations are completely equivalent, and both can be used to solve t he

problem.

We will derive the compatibility relations using displacements. An

alternative derivation to find the compatibility relations in terms of velocities

can be found in appendix A-

We define r as the vector from the origin of a. fixed co~!rdinate system t<!

a point on the cable. A reference state is defined as the position of tbe cable

at some arbitrary, fixed time t~. The vector to the same material point at

that time is denoted by r, Isee figure 1-2!

Expressing the spa.tial changes using the Darboux vector of the reference

state, we find:



Figure 1-2: Derivation of the Compatibility Relations



D r - r ! 8 r - r !
t a b + A~X r- roi

Ds c!s a o 0

  l. 13!

Dr Dr D r - r !
+ H,X r - r,!

Ds Ds as

According to the definition of the tangential vector [Hi!debrand 49]:

Dr
t t,p! = �  t p!

Dp

1 Dr

 !+e! Ds
�.14!

Therefore, we obtain.

+ 8 r - r !
�+e!t - �+e,!t, =  ,, b ! + B,X r - r,!

s

�. 15!

the compatibility relations ia terms of velocities, �.15! is rewritten as:

D r - r,!
�+e!t - �+e,!t. =

Ds

�, lc!

Taking the time derivative

D Dv
�+e! t

Dv Oe
= � t + �+e! >Xt!

Ds Bt

�. 17!

These are the compatibility relations in terms of velocities. Ia this case.

no reference system is involved. Explicity this can be written as;

�.15! is the compatibility relatioas in terms of displacernents. To obtain
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Be
� - v�23=-
as Bt

Bvg 1 3+ v Q - v3n!= �+e!~3 �.18!

Bv3
+ "2nl - �+e!

Bs

1.S Relation between the Rotation and the Darbonx Vectors

The rotation and the Darboux vectors are related. This can be shown as

follows. Equality of the mixed derivatives can be expressed ss;

�,19!

Bn a~
� = � + num
Bt, Bs � 2Q!

or explicity

an, B~,
at Bs

B4! g
0 ==-n~ +n~

1 3 3 l

an3
� = � +n~
at as

When expressing �.19! in terms of the Darboux vector and the rotation
vectors, using the formulas for triple vector products, the fol]owing equality is
obained:



1.6 Forces Acting on the Cable

The forces acting on the cable are  a! the tension,  b! iis weight,  c!

external forces, The external forces include fluid rela ted forces su ch as

hydrostatic forces, drag forces and inertia forces.

1.8.1 Weight and Buoyancy forces

As shown in figure 1-3 the segment is in contact with the fluid only at

its sides, so that the hydrostatic force is always perpendicular to the cable

configuration  i.e., in t,he t, n plane!. It is very convenient to add and

subtract the "missing" hydrostatic forces from a cable element  as shown in

figure 1-3!. Then, by lumping together all the hydrostatic forces poin t in g
towards the interior of the cable element, we obtain Archiinede's force in the

vertical direction.

B=p A dp

where A is the  stretched! cable sectional area,, while we lump together

the tension T  pointing always in the tangential direction towards the exterior

of the cable element! and the hydrostatic force acting in the same direction, to

create the effective tension T,.

T = T+p-A
e

The introduction of the effective tension causes the equations in water to

have the same form as the equations in air, except that the weight, must be

replaced by the net weight and the tension by the effective tension.

If m denotes the unstretcbed mass of the cable per unit length, and m
0

the corresponding stretched quantity, then conservation of mass implies:
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p4 1

Figure 1-8: Effective Tension
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m, ds=m-dp

Since we managed to artil'i ially create a buoyancy force by introducing

tbe effective tension, we can now use the net weight of tbe cable per unit

 stretched! length in wat.er,

m g-p g-A

We assume for simplicity, following Breslin IBreslin rdj that the volume

per unit length of the cable remains unchanged  which implies that Poisson's

ratio u is equal to I/O! to obtain the net weight per unstretched unit, length

in water w as0

w =g  m-p A!

where A is the unstretched cable sectional area. The corresponding
0

quantity per stretched unit length, w, is related to w by the relation  based

on v = l�!:

w  is = w dp

Therefore

F~~-dp=-w, k ds

where k is the unit vector in positive direction in a fixed referen  e

system.

l-6.2 Fluid Hydrodynamic Forces

In addition to the hydrostatic force, the cable is subject to a, fluid force,

which includes a fluid inertia component   related to the added mass m j and

a viscosity re!ated component  drag force!. If a Morison tvpe of loading is

used, then the fluid forces are decomposed simply in an added mass force and
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a velocity drag force.

The subject ol' the a e massh dd d ass for cables has attracted some attention in

' ll h a current is present. Lighthill  Lighthill 60]tbe literature, especially w en a curren is

showed that or e rab f th t nsverse osciHations of a horizontal slender body whose

longitudinal axis is par e oall I to the current the added mass force can be

approximated as'

D DW
F�= � � I m,

Dt { ' Dt

where W is the vertical displacernent, rn the added mass per unit length

of an infinite cylinder with the same cross section as the local section of the

body, and D/DT denotes the substantial derivative, i.e. if U is the current

speed:

a a a a
F'A=-  � - U- � 3 m,{x!   � -U � ! - W xt!

R BC Ox ! 4 Bt Dx J �.21!

The direction of F' is vertical. Lighthill showed that this approximationA

is good, provided the wave length to diameter ratio is larger than 5, and the
amplitude of oscilla.tion is small. An extension to a curved inclined

configuration must account for possible interactions among the various cable
sections and, primarily, for separation effects. Breslin  Breslin 74] used
potential theory to derive an expression for the added mass force for a cable,
but his final expression, obtained by a strip theory approach is in error and
does not reduce to Lighthill's expression. What is actually missing is a double
material derivative as shown in �.21!. Breslin's expression contains a material
and a. regular derivative. In Lenskii  Lenskii 78] an expression to include
stretching effects was derived,

It is the author's opinion that separation effects are predominant.
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shown in Allen and Perkins [Allen 51j any inclination above 3 - 5 cause.

expression �."1! to fail, It. is well known also that vortex shedding has

profound effect on added mass, so that any corrections for current or

stretching effects within the frame of the investigators above may not be

necessary. Until conclusive experiments are conducted therefore, and with the

exception of cables towed along their axis, it is suggested in tbe present study

to use an added mass force per unit length in the direction normal to the

cable.

Bv
F+ dp = - m, � ' ds

Bt
� o1!

where m the two-dimensiona! mass per unit length of an infinite cylinder

with the same cross section as the cable, and under identical flow conditions.

and v the normal velocity between the cylinder and the fluid particles. The

value of m of course is difficult to find and only partial information i»

available as in Ramberg and Griffin [Ramberg 77j.

To obtain the drag force, we use the separation principle. The drag

force on an inclined cylinder is separated into a normal drag component,

proportional to the square of the normal relative velocity and a t angen t ial

frictional drag component, proportional to tbe square of the tangential relative

velocity. This force can be easily decomposed into a normal, tangential and

binormal drag components [Breslin 74].



1
P' dp � p CD  Re! D v,< Iv t! t �+e/2! dtp � w Dt

1

Jp = - � p QD  Re! D v ~v, + v,>j2 n  I+e/"jdsp w Da

F dp = - � p CD>  Re! D v,> v"> + v- 2 b {1+e/2!ds

�.23!

where: D: the diameter of the cable
0v,, v,, v > . the component of t,be relative velocity

L~nsteady fluid forces, such as due to waves, vortex shedding and

galloping are not considered in the present work.

I.6.3 Tension Force

The force on an element with unstretched length can be written as:

d BT, dt
� {T, t! ds = [ ' t + T � ds
ds l Bs ds

aT.- T.-
t+ � n ds  l,24!

1.7 Equation of Motion

Using {1.22!, �.23! and {1,24!, the equation of motion  l.l0! can
rewritten as:
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Bv ~ BT T
m, I � +~Xv = t+ � n

lBt Bs p

Bv Bvb
-wk- m n+m b!RR ab Bt

op
+  F t + F n + F b!�t n b �.25 I

natural coordinate system.

1.8 Governing Equations

The complete set of governing equations is obtained by combining �.17!.

�.20! and �.25!.

Bv ~ BT
m I � +'Xv = � t+TA n

Bv ~ Bvb0-wk-maa n-m» b
-at "Bt

+  F,t + F, n + Fb b!�+e!

Bv Be
� + BXv = � t + �+e!<'Xt
Bs Bt

�.2'>

BQ
= � + QXa

Bt, Bs

This has to be supp/emented with a tension-strain relation.

The above equation is the complete equation of motion expressed iu it ..
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Be
= f e � s!

Bt
�.27!

e above is a set of 10 equations with 10 variables: v]T ver 3! ~j!

e . Given appropriate boundary conditions, a solution can be
3t t! 31 e!

obtained, In the sequel, we will refer to m  the mass per unit unstretched

length! as m, dropping the subscript o for convenience.

1.Q Euler Angles

The governing equations are best expressed in terms of Euler angles. Let

P, 8, g be the Euler angles defining t,he position of the t, n, b system relative

to the  x,y,z! system.  See figure 1-4!

First we perform a rotation around the y axis by 8, then a, rotation

around the z< axis by P. The x> axis is now the aew tangential direction and

the  y>,x2! plane is a vertical plane. Finally we perform a rotation t/' around

the x> axis, so that finally x3 corresponds to t, y> corresponds to n and z3
corresponds to b, It is important to note that the Euler Angles are not
unique when the cable element is coinpletely vertical and when this case occurs
new angles need to be defined.

be reformulated. For raore

72b] and IFirebaugh 72].

To investigate the ro ertip perties of three dimensional dynaraics,

It is ossible to vp ' o solve the equations without performing the rotation
The {,x ! lane is thy>, >! p hen vertical, while this eliininates one variable f out of
the equations, The ex rep ssions which were derived for the Darboux vector Md
aho for the force corn op neat of the tension are not vaHd, however, and must

details, see [Cannon 72a], ICannon
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Figure 1-4: Definition af Euler Angles
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x = cosg cosP x + siaP y - sing cosP z

y =  siny sing - cosrP sing cosg! x
+ cosf cosP y +  sing cosg + cosg - sing sing! z � 9g!

z =  cosy sing + sing ~ sin> cosg! x
- sing cos4 y +  cosg cosg - sing - sing sing! z

where x,y,z, are the coordinates in the fixed coordinate system aad

x,y,z are the coordinates in the natural coordinate system

'A'e caa express the vertical unit vector ia terms of the natural vector,
using the transpose of �.28!

k = sia4 t + cost/ cosP a - cosP - sing b

The equations of motion are obtained as:

gV aT
m � + v,, v> - ~3 v2 � + F �+e! - w sinj

Bt J Bg 0

Bv

 m+rn ! � + m u~vt - mtv3! � B3 T + F �+e! - w cosP cosQ �.30!

 m+mab + m +lv" >2 l Fh l+e! + w cosp sing
Ot h o

The rotation vector expressed ia Euler angles gives:

preferable to use the natural coordinates. The transformation between the two

coordinate systems is given by:
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u dt =  sing 68 + 6$! t

+  cosy - cosy~ M + sing 6p! n

+  - casP - sing 68 + cosy~. 6P! b �,31!

In component form we obtain:

09 8$
m> � � sing - � +-

ot Bt

ae ay
4Jg = cosp ' cosp ' � + sing

Bt Bt
�-3"-!

89 Bp
Ll/3 - sing~ cosg � + cosg

Bt Ot

The Darboux vector expressed in terms of Euler angles gives, using

Frenet's formulas:

1 BP 1

p Bs cosa

8v~ 0$
� - tanyt'~ tang
Bs IPs

�.33}

DH 0$ 1
� + � - tang
Bs Os cosP

1.10 Governing Equations using the Euler Angles

lf {1,32! and �.33! are substituted in the equations of motion and the

compatibility relations, the governing equations in terms of Euler angles are

obtained.



ap ay
-   - net sing � + cos0 - ! v2

at at

aT
= � + F, l+e! - w sing

BS

Bv~ 88 8$
 rn + m ! � - m sing � + � ! v3

Bt at at

as By
+ m -cos4 - sing - � + cosrj � ! v

at Bt

8P 1
� T + F,�+e! - w cosP cosy

Bs cosg

Bv~ 88 Btp
 in + rn b! � + m sin> � + � ! v

Bt at Bt

a8
- m cos4 cosr,' � + sing � ! v

at at

b  + ! +, os' sing �.34!

Bvt vn

Ds cosy' as at

~4' v a/= - I � - tariff' - tang � fv +-
as Las as j cosy as3

88 Bp
= �+e! -cos4 sing � + cosg -�

at at
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Bv as a4
m � +  cosy - cosy � + sino ' ! v3

Bt at
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av ay/!
� + [ � - tana tang - � v,
as Las

as
= -�+e! cos4 cosy'! � + sing>

gt

T, = f e!

These constitute a set of seven equations with seven un~nows � ~4! a«

the non-linear governing equations in terms of Euler angle>.

l.ll Two Dimensional Non-i inear Governing Equations

The gove ming equations �,"6! are simplified s igxa if ican tip when the

motions are planar.  see figurc 1-5!

2! � � 2�= 0

� � 0

v3 � 0

Therefore the equations can be written explic itly as:

av aT
 Ill v>>~3 � - w,s in' + Fd,  1 +e!

lat as

a a0
3 c 0t

+ va = T � - wcos4+ F �+e!-dn
at as 8t
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Figure 1-5: Two dimensional Cable Dynamics



4Q

� 3~!

B1/p B~~

Bt Bs

1

where- F'd,�+e! = -p�CD,D� Ucosg - v�! ~Ucosy - v,~  j+e/ !

1

F< �+e! = - � p CD D  Us>np + v !  Using + v ! �+e/"!

U = current

In the two dimensiona! case we have:

Therefore we obtain the fina] form of the non-linear, two dimensional

equations expressed in natural coordinates:

Bv BT
m � - v q1 = � - w sing + F �+e!dt

~2 BP Bv
mI � +vP = T � -wcosP+F �+e!- m1 t eB o 'Bt

vn Be

Bs p Bt

Bv2 v!
+ � = �+e!,

Bs p

1

p



Bv
1

Be
v

Bs
�.36!

Bv,
� '+ <, v, =  >+e�t
Bs

Be
T = f e,�,s!

Bt

� equations with 5 unknowns!

1.12 Investigation of the Characteristics of the Governiag Equations

Bv Bv
� +a,.- � +b,=0
Bt 0x �.37!

To investigate whether cbaracteristic lines x = at! exist, or equivalently
whether tbe system can be written in terms of total derivatives only, linear
combinations of the set of equations �.37! are formed [Whitham 74]-

Bv Ov.
l.� '+l a" ~+b l =0
'Bt ' uB �.38!

The tensor sumrnatioa cooveu iou is used.

The non-linear cable equations can be classified mathematically as a

quasi-linear first order system, when the constitutive relation is of the form:

T = f e!

ln the case of a Kelvin visco-elastic damping model, the system is not
quasi-linear and the investigation of tbe properties of the governing equations
becomes very difficult. When restricted to the constitutive relation above, the
system can be written as:
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We want to rewrite these equations using total derivatives aIong the

characteristic curves.

dv.
I.� +b l.=o

1

d 
on � = c

This is only possible when:

I a--=l.c
I u j

This is the condition to determine a characteristic line. To be abl~

determine completely the system, we must have n different characteristics, so

that, the condition:

fa..-cI =0
LJ

must provide n real eigenvalues.

We restrict our analysis to tbe two dimensional case. See  Critescu 67]

for a derivation in three dimensions and in a Cartesian coordinate system.

The quasi-linear form of the non-linear, two dimensional equations is given in

tbe next page,

After some manipulation, the characteristics can be found as:

.�,P
T

M�+e!

el

Ll.4OI

c

Four real and distinct eigenfrequencies are obtained, so the system is

hyperbolic. Critescu obtained tbe same result for three dimensional shapes.

The resulting waves can be classified as elastic waves and transverse waves. If

the system is considered inextensible, the elastic wave speed goes to infinity

and the system can be classified as hyperbolic-parabolic. For a linear-tension



BvV
a

1+e1+e

Bv

V

Bs1+e

-V
a

where; w F~, 1 Bf
- � sing + +1+e! + ��

I rn m Bs

F��+e!
- � cosP +

M M

 M=rn+m !

Table 1-I: Quasi-linear Form of the Two Dimensional Equations of Motion

Bv

Bt

hv

1+e
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V V

bv'
t

0
M 1+e
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strain relation the elastic vavespeed can be rewritten as;
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Chapter 2

STATICS AND

LINEARISKD CABLE DYNAMICS

2.1 Introduction

Static solutions can be obtained from the governing equations derived in

chapt.er I by retaining only the time independent terms. For a cable banging

solely under its own weight, the results are the well knoii n cat enari

equations [lrvine SI!, An important. simplifica.tion of the dynamic problem

obtained when the solution is assumed to consist of a static part and small

oscillations around this mean position. The governing equations can then be

separated in non-linear static and linearised dynamic equations.

The static problem, including hydrodynamic loading, has been investigated

extensively, For a revie~ see !Casarella 70!. The linearised cable dynamic

equations have been derived by Goodman and Breslin [Bres]in 74! lor t'ai v
dimensions. Linearised dynamic equations for the case o3 a toiled

configuration can be found in [Firebaugh 72!.

2.2 Static Kqnations in Three Dimensions

By setting aH dynamic quantities equal to zero in �.3p! and II Zql >e

obtain the following set of static equations, with a subscript o to denote static

quantities:
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BT
+ F  ] + e ! w stnp = 0

as

- T i F j]+ e! - cospp cos+p 0

 ] + e,! + w�cos4 sing = 0

 -"-] !1 84,
30

c os@ 8s

Oy' BP
= � ' - tant tang]0 ~ o o

88, o0, 1
� '+ � ' tan< � = 0
Bs Bs cos4,

wbere F,, F,,, Fb, are the components in the  t, n, b ! system
of the hydrodynamic drag forces, The exteraa! forces can be expressed in
terms of the Euler aagjes as:

'dt ~ "~r ~ vtr I  '+'o~"-j

I

F I1+e! =- � p Cda Do vnr + vbr
v  ]+e/'j

1
1

FI o{] + e ! = - � P~ Cdb Do   v + vb !" vb< ]+e /"!

where v<,, v,, v> are, ia this case, the cotnponeats ia the   t, n
h ! system of the current velocity, which can be expressed as:
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v = - U - cos 8 - ct! cosptr o 0

sin 8, - n! sint; - cos 9, - a! sing, cost''0

v,b � � - U sin�, - o! cost,' + cos 8 - a! - sing sing,

~Teo
� +F �+e!- v -sing =0

� '+ F �+ e!-w, cosset
cosy 0s0

 n o!

F> � + e ! + w sint!, cos4

T, cosP
� + e! + w cost" .cosp = 0

sin>," Bs0

The following t.hree geometric relations must be added;

ax
= �+e ! cosP�cosy

Bs

8y
= �+e ! sin4

Bs

 - ~!

Bz
= - �+e ! sinH cos p0

8s

together with a tension-strain relation:

where o is the angle between tbe current velocity U and the X axis in

the horizontal p1ane  see figure 2-1!.

The above equations can be simplified as:



Figure 2-l: Definition of the Current in Euler Angles
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T =E A-e
CO 0

Equa'tions �.2! and  ".3! constitute the complete set of governing

equ ations for st atic analysis. The non-linear ordinary differential equ at ion.

numericalmust be supplemented with appropriate initial conditions

integration. In most mooring applications a horizontal force or tension is

applied at the top, in a, prescribed direction. The prescribed water dept.h D�

is an integral constraint;

!

D�= �+e ! sino ds
0

An iterative, shooting method, using the angle P, can be used to satisfy

this constraint.

In two dimensions the static equations can be written, with g> = 0 and

=O,as:0

aT
= w sing, - F, � + e,!

Bs

 - ~!Bp
T�' = w coscI, - F�� + e,!

Bs

with: F � + e ! = + OSp~ D, ~ U os' I UcosC' j �+co/ !

F � ~ e! � o,5p CD, D U sing I Usinp ~ �+e / !

The static equations �.5! are accompanied by the following two

geometric relations.

2The subscript indicates static vs»»les.
0
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the equations:

Bvt BT
m = � + F

tlt

+ ~3{! T  s't np' ~ cos Q - g � cos ttr ~ p !

Bv

BT.
+ �   - sing - cosp - 8 + cost,«, y !o o o

Bs

Bv BT.
M3 Fb [ +   - costt' . Cosp - 8 st nest' ~ Q !3 B b I

+ 030 T -   sing Pt + t,' !

e, I BT
at E~ Bt

Bv
V

Bs

2� + vt, Q~ v3. 2O � >3 I+e !
Bs

where M�= m+man, M3 = rn+mab and F<t~, F»t, Fbtt denote the
linearisatton of the hydrodynamic drag forces F<�+e!, F �+e!, Fb l+e!

projected on the static reference system minus the drag forces on the static
shape,  See chapter 6! Similarly, we proceed to linearise the compatibi!ity

relat ions.



vectors gives:

8B!!
"3O

Bt, Bs

8 J~
0==+ ~ -n30-~3 010

Bs

8033 8~3
= � + ~�

at as

The Darboux vector expressed in Euler angles gives:

Q3 t cos ! 23Q sin j~o o 1

Bs

tang tang~' 8p
Ql j n

cos cos" p

~ Can/
os

- tang"
0

DP
+ � - tang' +

t9S Os cosp Bs
0

I l

cos "q~< cosP
0

84 Can/
+ � - tanq'

Os cosg
0

Tb e rotation vector, expressed in Euler angles gives:

Tbe iinearisation ol' the relation between the rotation and the Darboux
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08! Bt�
sing - � +

0t Dt

08
~�= cosk - cosd � + sin>,'

0 0 0
 ".1 1!

as, 84
sin Q' c os/ ' � + cos r/~

 9t Bt

Next, we introduce small dynamic displacernents  p,q,r! along the static

  t p n p b p ! d i r e c t i o n s r e s p e c t i v e 1 y . To fi r s t o r d e r t b e v e 1 o c i t i e s a r e g i v e n

Bp
+  H,O.T.!

Bt

Oq
v2 � � +  H.O.T.!

Bt

Br
v3 � � � +  H.O.T.!

8t

IVe shouM point out here that relations �.1"! will be modified

Next, we observe that all dynamic equations, except for �.7!, can ti<
reduced by one time derivative if we use equations �.11! to elir ning e
 w m ~ !. Thus we obtain for the equations of motion:

1 ' 2' 3'

substantially in tbe non-linear case, because p, q, r are defined in the directinn
of the static vectors t, n, b while the velocities are defined along tbe

dynamic vectors t, n, b.



2

Tl+ 3l ' o alln .T +F'
2

aT.
+   - sing' coslp ' l + o l

Bs
� 13!

DT
i< . � = F», + �   - «sV. - ~<. 'l - '" 0

at os

+B T  sl0 l+0l!

The compatibility relations become:

+ p ~30 ~JO   s Q o oslo ~1+ cosgo ~l !�+e g  - jDs

IPr

>p  cosVo ' cm~ - 8l+ sin4o ' ~k !�+ca !
as

~'here the linearised component of the Darboux vector satisfies relation
�.10!,

We have as dynamic variables the quantities p, q, r, pl, 8l, gl ll 31
and T] which must satisfy a set of nine differential equations  '2.10!, � >~!
and �,14!, The above equations are the complete, linear, three-dimen»o"
equations or motion of a cable about an arbitrary, thre~dimensional, static

Bp Tl
� - q

Bs EA

 sing Cosh ' t l ~'0 ' ~l+ 30 a
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configuration.

2.4 Three-dimensional Linear Dynamics of a Cable with Two-

Dimensional Static Configuration

gl 00

= const  = 0 for convenience!
0

Qlo � 0

and equations �.13! through  '2,14! can be simplified ss follows:

cl p OTl
m Bt Bs

8$
To- ql + Ftll

Bs

q d~ 8<, BT
M�= 'T+ � T+ � 4 +Fl ~ o ~ l n 1 l

 ". l.~ !

Br BT ay,
cosp 8l +   sing 8l + gl ! + Fl,ll

where we used that in this case

dP,
A30 ��

ds

f?3I
Ds

In the particular case of a cable with a two-dimensional st at ic

configuration, the governing equations can be set in a simple form, which can

provide a. number of important solut,ions.

VVhen the static configuration is planar then:
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with the compatibility relat,ions

ap ay. T,
q

Os Bs E A

aq ap
� +p =4, l+e.!
Bs Bs

Br
� = - cosP 8>  J+e !o 1 p

The equations for the in-plane dynamics  p,q!, therefore, including the

compatibility relations, are cotnpletety decoupled from the equation for the out-

of-plane motion r, for the case of a static two-dimensional configuration:

�1 ~ IBp dy T,

8s ds E - A

� +p =4, l+e }
A ds

The solution method for the above equations, for the case of zero,

current, will be the focus of chapter 3.

8 q
M,

gt2
T + � T y � p y Fds t a, ' as l all
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2,5 Out-of-Plane Dynaxnics

From equation   .10! b! setting q = 0, we obtain:

84 t 88!
cosp ~

Bs Bs

Using the third compatiblity relation of �.16!, tbe equation of motion in

the out-of-plane direction becomes:

8-r 8 1 Br

0

which is a string equation with variable tension, The out-of-plane

dynamics are completely uncoupled within linear theory, therefore, and t heir

governing equation can be brought to the simple form of �.18!.

2.8 Linearisation of External Forces

The linearisation of the external drag forces is a difficult problem, ~Not

only are the hydrodynamic forces difficult to linearise due to their quadratic

form, but tbei depend also on tbe local inclinatioa angle. Therefore, their

linearisation wi]l provide additional angle dependent terms, which should be

included in tbe equations.  See chapter 6!
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Chapter 3

SOLUTIONS FOR LINEAR DYNAMICS

3.1 Introduction

ln this chapter, we will describe in detail the solution for the linearised

equations of a uniform, single span cable, with a two dimensional st atic
configuration. To highlight the interesting dynamic properties of cables, ii e
will restrict ourselves to tbe case where the gravity force is dominant over the

static current force, although the methodology can be extended to include a

current. This assumption will also permit direct comparison with previous

work on linearised cable dynamics.

The emphasis was put on analytical solutions and the physical

explanation of the dynamic characteristics, This wi]l hopely lead to a better
understanding and improved designs of cable systems which are subject to

dynamic load»,

Our primary interest will be in the calculation of the eigenmodes and
eigenvalues, which can be used, within the frame of linear systems analysis, tu

solve any loading problem of the cable.

3.2 Governing Equations

The governing equations were derived in chapter 2. The in-plane and
out-of-plane dynamics are uncoupled and can be written, under tb~

assumptions described above, as:



In-plane motion:

Bp aT
m = � - w cosy

o 0 I

a q Bp, Bp
M � = � T + � T +w sing

o 1

{3,1!
Bp Bp
� -q '=e
Bs Bs

t

Bq Bp
� +p =y! �+e,!
Bs Bs

Out-of-plane motion:

The out-of-plane equation is a simple taut string equation with variable
tension along the length.

3.3 Strings

The taut wire is the first cable to attract attention, because tt was ««
for musical instruments. Pythagoras in the 6th century BC and Aristotle in
the 3rd century BC knew quantatively the relation between frequency, tension
and length of a taut chord. Galileo �564 - 1642! in 1638, and the monk
M. Mersenne �588 - 1648! in 1636, published qualitative relations based on
experimental measurements. R, Hooke �635 - 17G3! and J, Sauveur {16~3-
1716! published also experimental measurements of taut wire frequencies and
obeservations of modes for the various harmonics,



-65-

and the curvature dp /ds are zero, so we obtain  see figure 3-1!:

a'p aT,
rn

Bt 8s

~~l
M = T

Bt Ds
�. 3!

Bp
� = e

Bs
1

Bq
�+e !1 o

B. Tavlor �68' - E731! in 1713 published the first dynamic solution of

the transverse cable dynamics by assuming a response shape, Daniel Bernoulli

�70G - 178"! published in 1738 theorerns of oscillations of hanging chains and

in 1755 his superposition principle of several harmonics for the taut wire,

which was opposed, surprisingly, both by D'Alernbert and Euler and remained

controversial until 1822, when Fourier illustrated such superposition..

O'Alem bert �736 - 1813! was the first to derive the partial different i a 1

equation governing the small amplitude transverse motion of a taut wire an<1
J.L. Lagrange �736 -1813! solved fully the problem by considering the string

as consisting of many  n! interconnected mass particles and then taking the

limit as n

Euler �707 � 1783! derived the equation of a hanging chain and then

obtained a series solution and an estimate of the 3 first natural frequencies.

S.D, Poisson �781 - 1840! derived the equation of a cable element subject to

an external force in 1820. and used it to derive a final solution to the

problems of the hanging chain and of the t,aut wire,

In the case of a taut wire with zero gravity force, the static angle
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Frgnre 3-1. Taut Strtng

«i lt T, = E

Assurrrirrg a taut «ire in air, we obtain:

8-q r-q
p:4

i>I l+e 0

I~-<!
d-p

]!
 tt

not v i brat e  it is geometrically irnpossib]e to create waves on an inelastic

straight line, because it can not accept even the infinitesimal stretch, which is
required to adju. t the increased length of a non-straight configuration!. -o~o

cia~ icity is not important quantitatively, but ver> important qualitatively, and

l.qual  orle' �.4 ! are the equations for the transverse and fot the

h>ngi udrrral Ielas ic!  fynarrrics. The t«o equations are uncoupled and the first
equat ron give.  hc impression that elasticity plays no role irt the trartsverse

dina rrics. This is of course erroneous, because an inelast.ic «ire simp!y can
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we obtain:

L lpA l+e, !
transverse, n=1,2,3...

mx E

ID
elastic, m=l,2,3...

3.4 Hanging Chaiaa

Figure 3-2: Hanging Chain

The freely' hanging cable in air  see figure 3-2! has also been studied
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w s 8q

I+e Bs

�-6!

The same elastic solution is found, therefore, in the tangential direction.

In the normal direction, after making the assumption that the cable extension

caused by its own weight is negligible, we obtain in air the equation:

�.7 l

and the solution is:

q s! =c J �m[- /"!+ c>!/ �m[- '/'!
g g

�.8!

where J is the Bessel function of the first kind and order zero, and

the Bessel function of the second kind and order zero, In order for the

solution to remain finite at s = 0, the second term must vanish since P is

infinite at s = 0, so the natural frequencies are obtained simply as roots of

=0 �-9!

The first five roots can be found as [Hildebrand 49I

u[L/!; / 1.204 7.4655.8964,3272.?60

In the case of a. ver tie al chain with non zero lower end tension, t b e

extensively, first by, Poisson who

present framework, we have P

8 p 8 p
p = E

Bt- Bs~

2
d dq

q= � Ig-
ds l ds

derived the governing equations, Within the
dp

z'j2, =0, T =ws:! '!
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Bq 8 Bq
= � f T +w s!� �.10!

The static tension is lineary varying from the bottom to the top, To

find the eigenfrequencies, we have to solve the following eigenvalue problem:

d T dq
  � '+ g!�

ds m ds
�.11!

with boundary condition q�! = q L! = 0

The solution of known problem is also expressible in terms of zeroth

order Besse! functions:

~ m!'~'-
If we denote: q =

then: q s! = c> 2»  w s + T !

+ c. y»  w s + T ! '~'-' �.1"!

3.5 WKB Solutioa for Strings with Variable Tension

The transverse equation for strings with variable tension is given by:

t9 q 0 gq
M s! Bt Bs l Bs �.13!

Taking the Fourier Transform and non-dimensionalising the length

variable rr = s/1, we obtain;

equation for the transverse dynamics becomes, after neglecting tbe effect of the

static st-rain:
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d dq
� f T ~! � + L2 M e! e2 q = 0
de l. do'

�,14!

This equation is suitable to be solved using asymptotic analysis, if we

assume that:

- T o! and M rr! are slowly varying  compared with the dynamic

solution! functions of rr

- or the non-dimensional frequency ~ is large. v = Ma L /T

~ ~

j+  +
T2 ~,2 L" Xf,+ ' ! =0 �.1o!

If the condi'.ions formulated above are met, we can try to find a ~KKB'

expansion of the form:

  = e~g + I, + g'/~ + g~/~,2 �.>t !

where the coefficients are determined from substitution in �.15! The

leading order approximation is:

a

  = exp  + 1~L  M/T! /" der !
 M/T!'/4 �.17!

Expansion named after '5'entzel, Kramers and BrilIouin

It is important to note that if one or both of the above conditions are

met, the asymptotic analysis will be valid. We perform a transformation of

variables suggested by Nayfeh jbayfeh 73]

]/2

After substitution and expansion of the derivatives, we obtain;





L" M
E'+ Ir=0

bo

The solution is:

1
exp  

{M/T! /
[ M/T! ~ !ds !

G

Expansion of �.22! for small values of e, assuming wL M/b! " large,t/g

gives:

v exp �/2 + � i~L  M/b! ! �

freely hanging chain, the solution �.20! is identical with the exact solution.

The MM3 solution can be found from �.20! or from the exact solution �.b!

using the large argument asymptotic approximation for tbe Bessel function~.

It, is interesting to note that, for constant tension, the WKB solution i

the exact solution, and for linear varying tension, the singular turning point

analysis gives the exact solution, In most cable analyses the tension variation

between top and bottom is not very large, so that a regular XVKB solution

seems more than adequate to solve equations of tbe type �.13!

Although the %KB method is not valid for a first order pole of t b e

equation �,1S!, the WKB method remains valid fore a second order po!e of
{3.15!. This means that for static tension of quadratic dependence in the
space coordinate, tbe VM3 solution remains valid, even close to the
singularity, This relatively unknown feature of the WKB solution is particular
important in very slack cables, where the tension at tbe point of lowest
tension varies quadratically.

This can be proved as follows: we consider a quadratic tension variation
T = bz". The first order %M3 solution is obtained from:
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If «e perfornt local analysis of �,21! directly by assuming a solution x"

near a = 0, «e obtain again as so]ution:

f ~ tr exp �/2 � i'  M/b!l/2j

i.e,, the WKB method has Cbe correct asymptotic behavior for small a.

8.6 Inextensible Cables

Next we consider the dynamic behavior of a uniform inextensible chain itt

the plane o1' its equilibrium configuration. The oscillations are assumed to be

small, so that the linearised equations can be used, The governing equations
�,1! can now be written as:

0 p BT>
tn = � w cos!

at' as

8"-q ap ay,
Tl + T + w singl ~ 0 o 0 l

� "~!dp Bo
� -q =0
Bs Bs

8$ 9o
+ ~

ds Bs

where m and M are assumed to be constant.

The previous equations were obtained from �.1! using the assumption
thai the strain is zero. Note, however, that the dvnamic tension is not equal
to zero, i.e. a motion of the cable can still generate tension, although it doe.-
ttot generate strain, Ke write tbe displacements p and q in non-dimensiottai
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form as  , q . The variable a now denotes tbe non-dimensional length.

Taking the Fourier transform of �.25!;

dTt
-mL ~"  = � - w Lcosg

da
o t

d<0
-ML-a rI = T +T � +w Lsiug1 d od o o t

�.26ld  de.
= 0

da da

dq dP,
� + E
da da

The study of' the eigenfrequencies and modes of an inextensible chain

ban gin g between two points at the same level was initiated by Rob rs in

1851 [Rohrs Sl]. Routh studied the exact solution for a chain banging in the

form of a cycloid [Routh 5S]. He obtained his cycloidal shape by taking a

cable wit h non-uniform mass. For this case, tbe dynamic equations can bc

solved exactly. For tbe small sag case his results are reduced to the results of

Rohrs who used a priori the small sag assumption for his analysis.

Pugsley [Pugsley 49] derived semi-empirical formulas to predict the

eigenfrequencies for a uniform chain. An approximate solution for the

linearised chain problem was derived by Saxon and Cahn [Saxon 53I. Their

results, based on a second order perturbation method, predict accurately t he

eigenfrequencies and eigenmodes for relatively fiat chains, or for higher order

modes. Goodey [Goodey 61] arrived at similar results starting from t h»

intrinsic form of the chain problem.

This analysis wil] follow closely the one used by Saxon and C'ah n. A
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more careful perturbation analysis of the problem reveals however that a

revised first order perturbation scheme is able to predict the eigenfrequencies

and eigenmodes far beyond the validity of the second order solution derived by

Saxon and Cahn.

The effect of added mass is directly included in the derivation. The

derived solutions can be used equally well to predict eigenrnodes and

eigenfrequencies of inclined inextensible chains, or to calculate the response ta

an imposed excitation at one end,

3.8.1 Statics

Some basic equations from the static analysis are needed in our

derivation. For a catenary differentia.l element equilibrium of the forces gives.

 The following relations are valid for extensible cables as well, if tbe weight is

the only external force.!

dp
T = w 1 cosP

0 d 0 a

� n7j
di

L sing0 0

Then the following basic static relations are obtained from �."7!:

H
T a

cosP

� 28j
dc

0 cos
de

H is the horizontal tension in the chain and a  =w L/H! is tbe ratio of

the total weight of the catenary in the appropriate fluid and the horizontal





Figure 3-3: Sha]low Sag, Horizontal Cab!e

l: Span of the cable
1: Length of the cable
H; Horizontal tension

b: sag
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To leading order:

d-g
-Mw 1 q=aT +H � +O <2!lo dn

�.3~ }

which gives as solution:

AT
g rr! = c sin kLe! + c�cos kLa! - � '

l M~ L
�.36}

M
with: k =

H

To find the eigenfrequencies, we impose fixed boundary conditions:

Anti-symmetric modes of �.36! are only possible if;

c�= 0

Tl � � 0

kL
�.3i }upi

o Tl, coskLe
a ~! =

M~ L" i coskL/2
�.35}

Apparently no eigenfrequencies requirement can be derived from I3.38},

These are the odd modes with respect to the middle point of the cable

and are completely equivalent to the corresponding string modes, Note also

that no additional tension is generated.

Tbe even, or symmetric modes  in the transverse natural displacerr!ent j

are obtained as;
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However. we have also to consider the boundary conditions in the tangential

direction. Expressing the tangential motion as a function of the transverse

solution, gives:

o T I]o I8'! =- Ma2 12 l kL
s1DklAT

-o +C �.as!
coskL/2

The boundary conditions in this case are

E >/2! = 6->/"-I = o

They can only be satisfied if t,he integral C = 0 and:

tan kL/2! = kL/2

3.6.3 Derivation of the Governing Equation in the form of a Fourth

Order Differential Equation

The linearised equations of motion of an inextensible chain can be wr!<«n

lt is interesting to note that in this case a dynamic tension is generated

in the cab!e. The first syrnrnetric eigenfrequency is located at 2.86

compared to ~ for a string. This is due to the fact that the first symmetric

mod~ of a strmg is possible only if stretching is a.llowed, so for an inelastic

chain th< geometric compatibility relations are modifying significantly the

modal shapes.

Table 3-I gives the eigcnfrequencies for a, string and an inextensible cable.

F igu re 3-0 shows a comparison between their mode shapes. Hope l u! ly t hi'

exampl  illustrates the fundamental difference between cables and strings.

will now discuss thc general asymptotic solution for inextensible cables, without<

making the simplifying small sag assumption.
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Anti-symmetric Modes

Symmetric Modes

where: ~ = u L i/2
D

Table 3-I: Comparison between the Natural Frequencies of' a String
and of an Inextensible Small Sag Cable
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String hextensible Cable

Symmetric

does aot exist

Anti-Symmetric

Sylametric

u = 2.86+

Figure 3-4: Comparison Mode Sbapes of a String and
of an Inextensible, Small Sag Cable
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dT
-m~-EL = � -w Lcosy

d~

�,80!

dP, dy,
4J 1! L = T � + T � + w L sing1dr 'd ~ 0 t

P, the linearised equations can be written as:0'

dT
  = cos" � - cosP 0 1

0

m ~ H

0
�.41!

M-H �, d
r! = cos p T + cosP � + sin40 d~ 0

0 0

Ke introduce two nevi parameters: b  =m/M!, which is the ratio of the
nmass over the mass plus added mass, and X  =M~ H/w !, which is the non-

dimensional frequency parameter.

After dropping the superscripts, the equations of motion can be written as:

dT1
- h !   = cos-P � - cos4o o 1

dP!
- X- r! = cos-p T> + cosp � + sind 4'>

Po

The non-dimensional frequency parameter X is fundamental for the

perturbation analysis. It can be written as:

�.43!

h g �-pfluid/pmat!

By defining a new dynamic angle Q = y>/a and a new aon-dimensional
Crdynamic tension T> � � T>/w L, and by using the static relations �.28!, and

the relation d4 /ds = ocos 4 to change the independent variable from e to
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The parameter 1 is !arge for high frequencies and for large horizontal

«ave speeds  cH!,

The compatibility re]ations are given by:

dg dP
� -q � =0
dcr da

�.44j
drI d4
� +  � =4 o
da dcr

l

These equations can be rewritten  dropping the superscript! as:

dg

�.4o!
n

cos

Lquat ions �.4'2! and �.45! are the constitutive equations for the

inextensible chain. A change of independent variable has been

static angle P is now the independent variable instead of the

dvna1nics of an

perf<>rmc d. The

lengt h scale. This results in a simplification of the equations, so that

, T> can bc eliminated and a fourth order differential equation in g is
obtained.

cosy g - 2 sing g + cos4 + � 
cos 4

�,46!
s in00X

- 2 sing
0

cos P

The superscripts denote differentiation with respect to eI . If h = 1, the
origina! equation derived by Saxon and Cahn is recovered [Saxon 53].

The prescribed boundary conditions for mooring line applications arc

do�

dry
� +4=
dy

b X~
Ii=0

I

cos P
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normally:

 �g! = given

e�q! = 6 �' ! = given4'a

Other boundary conditions can also be imposed. The eigenrnodes and

eigenfrequencies are found by imposing homogeous boundary conditions at both
ends and searching for non-zero solutions.

3.6.4 Self-Adjoint Form

The constitutive equation is in self-adjoint form and the fourth order

differential equation can be written as:
l!

hXt cosy 0" "+  "-cosd + 
' -  = o
cos cos P,

�. 47!

The above equation reduces to �.46! by expanding the derivatives.

Surprisingly. this fart seems to have escaped the attention of previous

researchers,

The above equation describes completely the linear dynamic behavior of
an inextensible cable under its own weight. The four governing equations can

be reduced to a single fourth order differential equation, on'ly for inextensible

cables. The independent variable in the above equation is the static angle 0 .

3.8.5 Orthogonality Condition

Using the self-adjoint form of the inextensible cable equation. t bc

following very important property for the eigenrnodes can be proven  see

appendix C!.
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E'.,  j b 4',0;4'top
for i' �.4S!

<bot

are tbe eigenrnodes in the tangential direction with fixed
j

We can rewrite the compatibility condition, using the Lagrangian

where

boundaries.

coordinate as the independent variable as, in the form:

f 1 M g,- tf + rn  ,  - ! der = 0
O

for igj �.49!

where:

the components of the eigenmodes in the transverse direction

t,he components of the eigenmodes in the tangential directionE;

3.6.S Derivation of Asymptotic Solutions

3.8,6.1 The Fast Solution

A solution in 9 KB form is proposed:

I
$= exp   Xff>+ fg + Ihl+ tt+" j �.5Gj

The novelty of the approach consists of substituting �.80}

�.46} «it bout making any simplifying assumption a priori.

The solutions are achieved by postulating two dil'ferent types of motion

when X is large, One is «ave-like and fast varying compared to t he

coefficients of the equation. Physically it represents transverse waves !n the

chain. The other type of solution is slowly varying in space and represent-

instant adjusternent of the chain to a disturbance, so as to preserve constant

lengt h  inext ensible chain!,
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The results were obtained by using MACSYhSP:

o x'!

�.o1 !

f! P !=0

The second solution indicates that two slow solutions must exist and will

be analysed separately.

0 ! ! {3.5' !

h>  o, ! = � i cos i-PO X-! �.o3!

Results for 0 ! ! and O�! were also calculated but for reasons to be

given later, the usefulness of these results seems limited.

The fast solution can be written as:

 f �� cos ~ 4,',"�'  Xf + h/! ! �.o4!

dP
cos~ y

where: f =

28 - 16h 29
cos I"P - � tan-y 1 dP

32 32

For the boundary value problem considered, the solution for the normal

displacement is also required. It is given by:

6hiACSYMA is a computer program used for performing symbolic and numerical
mathematical manipulations. ll. is developed by tbe Matblab Group of tbe M,I.T. Laboratory
of Computer Science

t

fg �,! =+ cos'~'-'y,

7 sindhi
g, c.! =--�

4 cosP

28 - 16h 29
- � tart q

3o



g< � � - 7/4 cos / P sing;'   Xf + h/X!

� cos7/4<,  !f + h/! ! ',",   Xf + h/X! �.55!

correct solution to O l! is therefore given by:

co 7/44, cos {gf!
f o sin

�.56!

I

q = - 7/4 cos /44 sing ' '  ! f! � cos /4P Xf "s  ! f! �.57!

3.6.6.2 The Slow' Solution

The slow solution is found from �.46! by assuming X large, when the

equation becomes:

X sing, h !
<" + 2 >' <' - � g = o l!

cos P cos P, cos~P
�.58!

Simplification gives:

 ll + 2tang  I h  = 0 ]./X2! �.59!

This equation is independent of the frequency. The solutions

are ITriantafyllou 82a]:

The solution �.54! and �,55! is, to leading order, equivalent with the

Saxon and Cahn solution. However the second order terms are different from

the ones found by Saxon and Cahn,

Even more important, to obtain the normal displacement correct to O l!, a

term obtained directly from the leading order solution in �.54!, appears in

{3.55!. This term is not appearing in the Saxon and Cahn solution. The
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s

= �-h ! + h silly + �  h-l!cos2$ + 0 h3! �.60!

 ,2 � � �-h!cos p + 3�+h!  p - -! sing + cosp + O h ! �.61!

h - h h-l!sin4 cosP + O h !

q,s � � - Bcos4 [�-h!cosp sin4 - �+h!tss - -! + O h I �.63!

3.6.6.3 Total Solution

The total solution to �.46! is given by linear combination of �,56! �.87!
and �.60! - �.63!.

  = A f1 + B f2 + C ,1 + D ,2

�.64!q = Agf1 + Bgf2 + Cg 1 + Dg 2

The eigenva]ues can be found, by finding the values of ! for which:

~f1 ~1! 1f2 ~1! 41 ~ l! 42 ~ 1

~f1  ~l ! ~f2 ~ 1! ~s1 ~1! ~s2 ~1

~f1 ~2 ~f2 ~2! ~s1 ~2! 42 ~2

~f1 ~2 f2 ~2! ~81 ~2! ~s2 ~2

Det
= 0

3s7 Verification of the Solution

We will verify the results by calculating the eigenfrequencies of an
inextensible chain hanging between two points at the same level. Many
experimental and calculated results have been published. IPugsley 49],  Saxon
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53I, [Goodey 61]

8.7.1 Kiaenfreqtteaciea

Tbe solution is considerab y simplified by noting that one slow and one

fast so]utian are symmetric and the other anti-symmetric. The eigenfrequenci.

equation �.65! can be separated, therefore, in one for even mades and one for

odd modes.

3.7.l.l Odd Normal Modes

The requirement becomes7:

1 P.cos'/-"P
tan Xf+h/A! = - I + 7/4stnp cos / q {3 Qfj!

X[1 + h/ X flj kosP + P sing

3.7.l.2 Even Normal Modes

Tht requirement becomes

ef.�.! z,.�,!

cos~/2Pcot !,f+h/!,! = [ + 7/4sinp cos / p ]
X[1+h/ ! ~f!j l sing

�.67!

'To make use of tbc syrnrnetry, the origin is selected in tbe rniddle of the cable. Tbr
lo~er limit of the integrais in f and h is tberefore 0, Tbe angle 4 is the static angle at tb<0
end point.
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For large X, the eigenfrequencies calculated by �.66! and �.67! give the

same results as derived by Saxon and Cahn ISaxon 53I and Goodey IGoodei

6i].

3.7.2.l Odd Normal Modes

�.68!

which is identical to the formula derived by Saxon and Cahn, and by

Good ey.

3.7.2.2 Even Normal Modes

�.69!

0

sing

which is also identical to the result of Saxon and Cahn, and Goodey.

3.7.2 Consistency with Previous Results

Equation �.66! can be rewritten for high order modes as.

nr, f h + kt! 1
+ 0   � !

where:  h + k ! = - �  l2 - 29t.an P !cos ~ P dP1 3~ " ~ 0 0 0
p

7
+ � sin> cos ~ P0 0

Equation �.67! can be rewritten for high order modes as:

 n + 0,~!~ f h + k,!
1- � + 0   � !

f  n +0.5! s- n

where:  h + k�i = - � �2 - 29tan P !cos ~ P dP2 a/~

32 p

7
+ � sing cos0 0

5/ "p
0 0

P sing + cosy,
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3.7.3 CoInparison of the Perturbation Results with the Numerical

Solutions

1/2 �.70!

where: f = frequencv
b = sag at midspan

The relation between the non-dimensional parameter 1 and tbe new non-

dimensional frequency parameter is obtained directly from statics:

r[- t/~ cop t/~
cosP

10p
s'

�.71!

The results are shown in the figures 3-6 and 3-7 and are significant,

because.

- Thei clearly demonstrate the improved accuracy of the new first

order theory compared to the first order theory derived by Saxon

and Cahn.

- The ne» second order theory and that of Saxon and Cahn seem to

agree very well up to a certain point. when ! becomes small and

thei break down.

We wiH now compare numerically the results obtained by the ne»

perturbation theory, with those of Saxon and Cabn and those of tbe f'inite

difference scheine. The figures on which the results are plotted have the same

format as the one used by Goodey  see figure 3-5!. The horizontal axis is the

static angle at the top. The frequency is non-dimensionalised with respect to

the natural frequency of a pendulum with length equal to the chain span;
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0

0

07

Figure 3-5: Eigenfreqoencies of a Catenary [Goodey 61]
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.38
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F'igtjre 3-6: Comparison between the Present Perturbation Solution and
the Solution by Saxon and Cahn

3. Saxon and Cahn  first order!

4. Saion and Cahn  second order!

lh

Nt

l. Vie~ perturbation theory  first order!

2. Neo perturbat.ion theory  second order!
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Reeortertce fteqvenctes

.se

Q7

C
.58

.18

.28

.is t
s.ss ~

'fOP' RNCLE
Figure 3-7; Comparison between the Perturbation Solutioa

and the Finite Difference Solutioa

l. Ne~ perturbatioa theory {first order!

2. New perturbatioa theory {second order!

3. Numerical solutioa  explicit centered differences, 100 gridpoints,

see section 3.9!
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- It is quite interesting that the new first order theory gives good

results even for X small, which is outside of the validity range of

the assumptions used, No breakdown of the solution is observed,

- There are some erroneous roots of very low frequency appearing in

the first order Saxon and Cahn solution and to a lesser extent in

the second order perturbation solution.  Not shown on figure,! The

new first order solution does not have this problem.

- The first order solution provides valid results even for top a.ngles

very close to the limiting value of 90 .

3.7.4 Nearly Vertically Hanging Cables

The limit, as the top angle approaches 90, exists for the first order

perturbation theory.

For odd modes:

l 7 1 7
t,an�rf! = - =- tan�>} = - ��

Dr,f 4 w 4
�.7" !

For even modes:

1 7 7
cotan�rr f} = = � cotan�>! = ��

2rf 4 u 4
�, 3!

b
with; f = f � ]'~-

g J g

The roots for ' can be found in table 3-II. The odd modes approach the

correct values for higher frequencies. The approximation seems to be slightly

better than the QXB approximation of the same problem  see table 3-IJ!.
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Table 3-II: Frequencies of a Vertically Hanging Chain

The explanation of this fact can be found in the way the tension is

approaching zero at the bottom of a hanging chain. 1t varies parabolically
near the bottom, compared to a linear variation for a vertically hanging chain.

One of the lesser known characteristics of a first order %KB approximation is.

as discussed before, that it is a valid approximation for smgular perturbation

problems with parabolic singularities. This may also explain why the derived
solution remains valid ia regions where the wave propagation speed is lo~.

The even modes have no counterpart in vertically hanging cables and
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they must be always considered for top angles near, but, never exactly equal to

g00 C.'learly, at the midpoint region the equations break down when the angle

is equal to 90 .

$.8 Extensible Cables

ln this section the dynamic characteristics of elastic cables wiH be

investigated usmg the same type of' perturbation analysis as for the

inextensible cables. The governing equations �.1! can be written, using non-

dimensional displacements and Lagrangian coordinate, as:

dT,
-mL ~ f'= � -w Lcosg

0 o 1

dy. dy,- M L' "~' g = T � ' + T � '+ w L sin>
0 d o o 1

�,73!

4  dp, T,

d~ d~ EA

dq do
� +  =y, �+e,!

The major change, compared to the inextensible governiug equation is in

the tangential compatibility relation, where allo~ance is made for stretching-

Tbe modification of this geometric condition will have a profound effect on the

formation of modes,

The rather peculiar dynamic behavior of extensible cables has only

recentlv received appropriate attention. Davenport davenport 65] is one of

the first to discuss dynamic properties of extensible cables for the case of th»
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guys of a mast. Ana!ytica! solutions have been formulated for horizonta! small

sag cables by Simpson [Simpson 66] and independent!y, using a different

method, by Irvine and Caughey [lrvine 74]. More recent work, of which this

report is a part, was done in the Ocean Engineering Departement at M,I,T.

See for instance [Triantafy!!ou 83] and [Triantafyl!ou 84].

As in the case of inextensible cables, the analysis of a horizontal, small

sag cable, gives us valuable information about the more general cable behavior.

The static relations derived in subsection 3,6.1 remain valid for tbe extensible

cable.

3.8.1 Horizontal, Small Sag, Extensible Cable

The solution to this problem can be found in [Irvine 81], but wil! be

rederived here, using tbe analogy with the inextensible case.

The derivation is completely similar with the one in subsection 3.6.2. To

!eading order the transverse dynamics can be written as;

H d g
-Mc.-L t! =a T> + � � +O e-!

1+e do
�. �!

To find the integration constant' Ty~ we can use the tangential

compatibility relation in �.74!, which can be integrated between the boundaries

where f�/'2! = 0-1/'2!= 0:

T S/2
lo = - o q a! do.

EA

�.i 6!

ln the above equa.tion the implicit assumption was made that T is

constant, and this is a good assumption when no longitudinal dynamics of the

cab!e are excited. An additional requirement for the validity of tbe theory is.
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therefore, that the frequency is much lower than the first elastic

eigenfrequency of the cable. This additioaal requirement was not needed in

the case of an inextensible cable, because the relation between normal and

tangential displacements are completely fixed due to the tangential

compatibility relation.

The governing equation is obtained by substituting  8.76! in �.75!.

H d-r1
� +M~-L r1= a EA

1 + e do~

a/2
q ej der

-S/2
f 3.77!

w L
where: a =

H

kL
sin � = 0  ~- ~!

M
>j

The requirement for symmetric modes is:

The above equation is completely equivalent with the governing equation

derived by Irvine and Caughey  Irvine 74!. The only minor difference can be

found in the fact that Irvine introduced the concept of an effective length

It is the author's opinion that this introduction is not useful! and the actual

unstretched length of the cable should be used consistently.

The eigeumodes of the above equations can easily be determined  Irvine

81!. The requirement for anti-svrnmetric eigenmodes is:
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kL
� 0

2

kL kL 4
ta.n � - � +� �.79!

w L
where:

H

E-A,

H

A,=  I+, !A

is proportional to the ratio of the elastic stiffness to tbe catenary2

stif'fness. For an infinite elastic stiffness  an inextensible cable! tbe previous

derived results are found, For a cable with infinite catenary stiffness  a

perfectly extensible string! the symmetric string eigenmodes are found.

Equation �.79! allows us to find the symmetric eigenfrequencies for the
whole range of X. For an extensive discussion of tbe properties of the
eigenmodes and eigenfrequencies with varying X see !Irvine 81I and [Veletsos
8'2]. '5'e will limit ourselves to a plot of tbe eigenfrequencies versus X.  See
f'igure 3-8,! The points where the symmetric eigenfrequencies are equal to the
anti-symmetric eigenfrequencies are called modal cross-over points,

It is also interesting to look at tbe modal shapes with varying X. The
transverse modal shapes for the first symmetric modes were plotted for various

values of X-.  See figure 3-9!

The results obtained above are only valid for cables with end points on

the same horizontal line and with a shallow sag. The case of an inclined
cable, treated by Irvine approximately as an extension of the aboie
theory [Irvine 78] is better treated with the more general analysis of the net
section.

The theorv presumes aLso that quasi-static stretch is present, If this i.
not the case, tangential dynamics will be excited and the above theory will n t
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Figure 3-8: Cross-Over Pheaomena for Small Sag Cables
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Figure 3-9: Symmetric Mode Shapes for a S>

 Normal displacement: full line!
�0 X tangentiaI displacement: dotted



-106-

be valid. The elastic wave speed is:

E
/2

P

and the transverse wave speed is:

therefore:

The ratio H/EA is in general very small, so that the effects are not

important until the 1S - 20 th mode, It is important to note that if we vary

X to smaller values, w L/H should be simultaneously reduced to smal!er values

in order not to violate the quasi-static stretching condition. In other words,

for each geometric configuration, there is a minimal value of ! be!ow which

the dcrivat ious above are not valid.

3.8.2 Orthogonal!ity Condition

lu the casse of extensible cables, the four differential equations cannot he

reduced to one equation as in the case of inextensible cables. This makes the

analysis more dil'fic ult mathematically. The orthogonality condition for t he

modes, though, can be proven em~i!y.

4e define Hfs,r! as the matrix of the influence functions corresponding «

the static displacement components in the tangential and norma! direction at a

point s. due to unit forces in the normal and tangent direction at point

 HIs,r! is the Green function for the prob!em.!
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Rosentha] proved the following reciprocity relations for cables under static

forces [Rosenthal 81J, which can be seen as an application of %maxwell's

reciprocity principle.

[H s,r!j = [H r,s!I

or explicity:

H!! s,r! = H t r,s!

H>2 s,r! = H2  r,s!

H!� s,rj = H  r,s!

H� ,! =H, ,!

Using the above relations, it can be proved that the following

orthogonality condition holds:  see Appendix D!

f l m g, g. + M q, .q. ! der = 0
D

�.80!

where: rn: mass of' the cable, per unit length

M: mass plus added mass of the cable per unit length

$.: tangential components of the i th mode

g.: normal components of the i th mode

Although the above result is well known for the dynamics of rigid

structures, it is believed that it has escaped the attention of previous

researchers as applied to cables, In the case of non-extensible cables, the

previously derived orthogonality condition is identical with the one derived

above.
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3.8.3 Derivation of an Approximate Solution

In the case of an inextensible cable, we were able to use a transformation

of variables to reduce the governing equations to a single, fourth order

differential equation. We could then solve the fourth order differential

equation using a perturbation expaasion,

For an extensible cable, the equations cannot be reduced to a single,

higher order differential equation. We will therefore solve directly the set of

differential equations using perturbation techniques. The procedure is more

general in the sense that it can be applied to cases where the shape is not

dominated by the weight forces ITriantafyllou 83], although the mathematical

derivation is less elegant than in the case of an inextensible cable.

The assumptions to obtain the perturbation solution are in both cases

completely equivalent and indeed the inextensible results are also obtained as a

limiting case of the extensible perturbation theory.

To be ab!e to use the perturbation expansions, two assumptions over the

magnitude of the coefficients are necessary.

The first assumption is that tbe ratio of the v ave speed of the elastic

waves, versus the speed of the transverse waves is large. This assumption is

valid for most cable applications where the material stretching is small.

Indeed from chapter 1, we obtained as wave speeds:
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therefore:

c EA1

where: b = mt'hl

h is a quantity of order 1, therefore the ratio of the wave speed is of

the same order as the square root of the inverse of the static strain, Typically

the elastic wave speed will be at least 20 times higher than the transverse

one. Tbe assumption can therefore be made that the solution consists of a

part which is fast oscillating in space  small wave length, transverse waves!

and a part which is slowlv oscillating in space  large wave length, longitudina!

waves!.

Tbe second assumption is that the static quantities in the equation are

slowly varying in space compared to the transverse oscillation. ln other words,

the variation of the static tension and curvature is small over a transverse

wave length, This assumption can be also stated as a requirement that the

variation over the cable length of the static quantities is small and/or that the

wave length of the transverse modes is small compared to the cable length.

One of these two conditions must be znet. Fortunately, it turns out that even

for the first modes of oscillation the above conditions are generally satisfied.

{See also the discussion on asymptotic strings with variable tension.!
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Under the above conditions the four differential equations can be

separated asymptotically in two second order differential equations. One will

provide the transverse wave type of solution, which will be fast varying ia

space, while tbe other differential equation wi11 provide slow solutions in space,

which correspond to the elastic waves, or, in the limiting case of inextensible

cables, to the instantaneous readjustement of the equilibrium position of the

cable.

The equations can be written in non-dimenstonal form as:

mL-c.-  dT wL
COS!

T, do T,

m L" ~2' dy dp T wL
= T - � + sing

T da do T, T,
�,82!

dE
g T

da der E-A

� + E = e, >+e.!
d r de

where. T,: representive static tension along tbe cable = constant

T, a!: static tension dT /da = w Lsing

T tr!: T>/T tton-dimensional dynamic tension

cr: non-dimensional Lagrangian coordinate

g; non-dimensional tangential displacement

rg: non-dimensional normal displacernent
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3.8.4 Fast Varying Solution

We will assume that g, rf are fast varying quantities, compared with the

static quantities, We denote by < a quantity which is an order ol' magnitude

smaller than one. In the sequel we rewrite a]l variables in terms of new

quantities wich are of order 1, multiplied by appropriate powers of ~ to

indicate their order of magnitude. {In order not to confuse the reader with

different notations, $, rI will still denote tangential and normal displacements,

but normalized to be of order 1.! For transverse waves, we know that the

tangential displacements are an order of magnitude smaller than tbe normal

displacements and, also that the dynamic tension is a second order effect.

This can be expressed as:

e"$  o!

g ~ 6@0'!

T ~   T a!

<pe!

These are the basic assumptions we make to obtain a solution of �.8~!.

Also, we denot,e as:

M Ln

T

w L
Q

T,

{3.83!



T, tr!
= T  ~tr!0

C

where now all the variables are expressed in terms of quantities of order

1 and powers of c, It can be easily verified by substitution, that the

governing equations, to second order, can be written as:

d dfg = � I T, � + o c~!
da   'do

d 
i! + O c-!QCf

Tbe first equation is a simple string equation with variable tension. The

unknown variable is fast varying compared to T and the non-dimensional
n

quantity ~- is a Iarge quantity when we studv the eigenmodes. Tberefore, the

NM3 solut ion previously discussed in this chapter can be used. However,

reasonable care should be used because we want to determine both g and

with the same accuracy,

The reader will have noticed that in the case of a, non-extensible cable

the second order terms were kept in the normal displacement expressio~

Therefore, we proceed by deriving the equations in terms of g using th<

relation:

�.8-~!
de

Tbe equation for the fast solution in the tangential direction can tben be

written to second order as.



=l le-

d"   � P' �d 
T, � �- 2T, � ' � + O c~!

~oa dr
�,86!

Verification of �.86! can easily be obtained by substitut jng �.85! in

�,86!. The solution to this problem can be obtained using the %KB method

for large parameters.

To leading order:

E =@   .!'' p + '! �.8  !

a

where: W = i~ �,,de
o  > !'~-'

This can be rewritten, in terms of dimensional quantities, as:

dy, a

g= �  T!~ expI+ i vL da �.88!

Using the relation �.84!, we obtain the solution in the normal direction

1 7 w singo o!

 T !'~' 4  T M!'~-I

1
exp + ie L do'

 T /M! i
�,89!

This result is identical with the result for inextensible cables, which was

derived by applying the MKI! method to the fourth order differential equation.

i,e, the extensibility does not affect, to second orde~, the solution for

transverse waves.

When the curvature is gero, the solution is the same as the AHAB

solution for a string with varying tension. The asymptotic AM3 solut ions
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were found to be very accurate even if the assumption of slowly varying static

quantities is violated, The dynamic angle can be obtained as;

The validity of the assumed order of magnitude of the dynamic variables

can be checked using tbe obtained so]ution.

3.8.5 Slowly Varying Solution

lh'e now assume that E, g are slowly varying quantities in space

 compared to the fast transverse v aves!, The norrrtal and tangential motions

are now of the sazne order. The consistent perturbation assumption in thi!

case are:

E cE  co!

g ~ Eg ter!

T ~ T ~o!

@AT!

The goverDing equations to second order can be written in terms of

perturbation quant it ies.

rI= T 4 +0 z}

where: b = m/M
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The set of the above equations can be written as a single differential

equation in terms of rI, by using the tangential compatibility relation.

The compatibility can be rewritten in terms of perturbation quantities 3!:

d$
Te= � -4

06 �.9'2 i

Using �.91! and �.92! the approximate constitutive equation for the slow

dynamics is obtained as:

n
Ve JJ

2� = 0+O ~! �.9,'4!

Ke can rewrite the governing equation as:

n

+ Q u! =0

m

where: Q tr! = oa

dd,
OO

The dynamic tension generated and the tangential displacement can be

found as:

7 =-M~ L
l7

�.9»!

If �,94! can be solved, �.95! can provide the other dynamic quantities,

to obtain the complete slow solution.
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The solution of equation �.94! is unfortunately not possible analytically

in the general case, The variation of the solution is of the same order as tbe

variation of Q cr!. Therefore a WKB type of solution cannot be used in this

case,

The solution of equation �.94! has been the subject of a major research

effort at M.l. T, mainly by professor Triantafyllou. See [Triantafyllou 82bj,

[Triantafyllou 8"c], [Triantafyllou 83j and [Triantafyllou 84j.

The governing quantity is:

�.96!

The only coefficient that is varying along the length is the curvature p �,

The solution of �.94!, therefore, strongly depends on the analytical functional

form of the curvature,

The interesting features of the behavior of the slow equations are caused

by the opposing effect of elasticity and curvature in {396!. The sign of Q can

be positive, negative or zero, The sign can even change at a point along the

cable. This has a significant el'feet on the solution ol' the slow equation and

on the overall cable behavior.

Ke will briefly discuss the different forms the solution can take,

depending on the quantity Q a!. As mentioned in the introduction of

chapter 3, only the weight dominated case will be considered,

For the weight dominated case, we can express the curvature in terms of

the non-dimensional length using the following relation between static

quantities:
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dy,
= acosP

do

w,L
a =

H w,L
tang = tanPb +

H

{3.9  !

then P can be expressed as.

dP w,L
= a cos- atan  tanPb + o !

dkr H
{3,98!

where: eb is the static ~ngle at the origin,
atan x! denotes the inverse taagent function of x.

The curvature is a complicated function of a, so that additional

simplifications must be made to solve the governing slow equation analytically.

Large Sag Cable

In the case of a large sag cable, tbe elasticity effects are normally

negligible, compared to the curvature effects. This can be expressed as:
M ~ L

EA

�.99!

d~ rI
-hp ran=0

OU

{3.100!

By changing the independent variable from o' to P, we can proceed to
transform �,100! into an equation expressed in terms of p . Wee also use the

which implies that tbe cable behaves essentially as an inextensible cable.
�99! can, therefore, be used to determine whether the cable can be treated as
inextensible or not. Note that the assumption of inextensibility depends on
the frequency and for high frequencies the elasticity e'ffects will be important.

If �.99! is valid, the governing equation �.94! becomes.
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compatibility relation for inextensible cables, written in the form:

d 

dy.

and tbe slow equation can now be written in terms of   as:

d~  d4 /d4 d 
-b  =0

dy; < de,
�.101!

Using the fact that P = a cos~P for a catenary, the final form for

t,he slow solution for an inextenstble cable is:

d 
�,+2tand � -h =0
dd.- d0,

�,10 !

for h = 1  ,> � � sing

- s/2!sing + cosP

l7 1 = cosg

q,�=  P, - s./2!cosg

The general solution, as already mentioned in paragraph 3.6.6.2 to
O�- b! is:

The solution of this equat,ion has already been given in �,60!-�,63!. The

two independent solutions were obtained by series expansions around h = I,

wbere, fortunately. an approximate analytic solution to �.102! can be found.



-119-

h
! + h sin~ + �  h-1!cos ~ + 0

 ~ =  !-h!cos q + 3�+h!  P - -! sing + cosP + O h !

�. 103!

b - h b-l!sing, cosP, + O h !

g ~ � - 3cos@ �-h!cosP sing, -   + ! P - � ! + Ph !

Small Sag Cable

ln the case of a small sag cable, the curvature in the cable will not vary

significantly and we can approximate it by a truncated Taylor series in terms

of rr . To rninirnize the error in the approximation the expansion is made
0

around a point near the middle of the cable.  See figure 3-10!, VVe define a

new origin of the Lagrangian coordinate at the point where the static angle is

equal to the inclination angle of the line. The new aon-dimensional Lagrangian

coordinate is therefore defined as;

z=a-a
a

where cr is the length coordinate of a point where P = g, and which can

be found from the static solution. The curvature can now be expanded

around z = 0. The coefficients are only functions of the static quantities.

= p�, { 1 + a,z + a�z + ...! �.! 04!

By using the static solution, we obtatn:

The approach followed bere provides, therefore, the same asyrnptoti<

solution, as the one for an inextensible cable, which was obtained by expanding

a single fourth order governing equation. The agreement can be seen as a

confirmation of the validity of the perturbation assumptions.
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Figure 3-10: Definition of the iVew Lagrangian Coordinate
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= - 2o cosP - smP
1

2a�= a2 cos"4 - �sin-q - cos p !

where: a = w L/H

The quantity Q o! can now be expressed in terms of z as:
M ~2 12

Q z! = - b ~2 � + 2a z +  a2 + Pa !z2! �.106!

or explicitly:

M u2 L2
Q z! =-h  V�; !

n
- 4o 4 cosP smP z

+ o 42 �0cos P - sin-P - 2cos P !z

+ O o3z3!

we write this as: Q z! = Q + Q>z + Q�z  .3.1GH l

M~ L2
with: Q =- h0 EA

Q, = 4oh p-,, cosP sinq

o2 h p2 �0cos2~ sin2y - 2cos q !

cable. SVe will consider three different cases.

l. Q z! is approximated as a constant.

XVe are now in a position to obtain approximate solutions for a small sa~
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M~-L

Q z! =-h oa,a

equivalent to assuming a constant curvature along the cable, i.e,

the static shape is parabolic, The governing equation �.100! can be written

M ~- 1."

ooa EA

d-g
� - h
dz-

�.109!

d-y
� +Q @=0
dz-

where; P« � = P«, = acos-p,

The solution can be written as:

g o! = exp   +  - Q !t~- a !

�,110!
0! =+h -0!' exp + -0!'

M u 1

EA

For horizontal cables, the leading order approximation is correct, to order

o z-, which explains the good accuracy of the horizontal small sag theorv.

'A'hen the curvature is large compared to the elastic parameters, the

solution is exponential, otherwise it provides elastic waves. The behavior of

tbe slow solution can change from sinusoidal to exponential e]astic waves,

depending on the magnitude of the curvature and the elasticity,

The cross-over phenomena are predicted accurately with the above theory.

Cross-over occurs when Q = 0, i.e,
0
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The leading order slo~ solution predicts a change of the type of solution

 exponential to sinusoidal! uniformly over the cable,

2. Q z! is approximated as a linear function.

The solution can now be written in terms of Airy and Bairy functions.

 Airy functions of tbe first and second kind! for the normal displacement, and
their derivates for the tangential displacement [Triantafyllou 84I. The

parameter Q varies linearly with z only when the cable is inclined.

Q z!= Q +Q,z
Q,z + � '

Q, z- z.!

Q,
with: z

The governing equation becomes:

d2 g g
+Q! z-z! =0 �.111!

the solutions in this case are:

= 4., z!A; -Q,'/  z - z,!
g z!

 z!B,

�.112 I

This solution a'llows for a change from an exponential to a sin usoida3
behavior along tbe cable length. If tbe transition point lies within the cable

b Ql/3

 Gz!
h Ql/3

-Q',/'  *-

-Q,'/'  z - z,!
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span, the lower part behaves as an inextensible chain and the upper part as a

taut wire.

3. Q a! is approximated rLs a quadratic function.

d g
+  ~,+~1 +~�2!=0

dz y, y
�.113!

This can be rewritten as:

d-
� �/4 v2

d y, + b
0

where: v =

b,

1!
+a! =0 �,114 I

b
2Q,

The changes in sign are due to the nse of an absolute value in the

expression for b>, The solution in this case is:

The slow solution can be expressed in terms of parabolic cylinder

functions for the normal displacernent, and their derivatives for the tangential

d isplac em en t.

The governing equation is:
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W> v,a!
 e z!

W� v,a!

1 dW,
= h � �  »!

b> dv
E z!

dW�
h � �  v,a!

bt dv

where W>, W, are the parabolic cylinder functions of the first kind for

Q�< D and W>, V�are the parabolic cylinder functions of the second kind

for Q ! D.

3.8.6 Total solutioa

Two fast varying solutions were derived in subsection 3,8,4, and two slow

solutions were derived in subsection 3.8.5. The total solution is obtained by a

linear combination of the four solutions that satisfies the boundary conditions.

The eigenfrequencies can be obtained by searching for the non-trivial solutions

of the homogeneous problem,

3.8.7 Discussion and Valuation

In the case of a shallow sag horizontal cable, by making the assumption

used in subsection 3.8.1 of constant tension and quasi-static stretching, and b~

When we let the clast-ic stiffness go to infinity, the solutions obtained for

extensible cables  both slow and fast! are identical to the results obt,ained from

the perturbation expansion of the fourth order differential equation obtained

for inelastic cables.
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using the !eading order approximation of the s!ow solution, the shallow sag

borizonta! cable results are obtained [Irvine 74] [Triantafyllou 83]. The theory

is more general, however, because it also predicts the eigenfrequencies of the

elastic modes and the quasi-static stretching assumption need not be made.

For deep sag, horizontal cables tbe derived perturbation theory predicts

correctly the change of eigenfrequencies with increasing sag  see part II!, The

predictions are valid for extensible, as well as for inextensib!e cables. The

theory is therefore more genera! than [Irvine 74] or [Saxon 53].

The shallow sag e!astic cable theory has been applied by Irvine to

inclined c ables [Irv inc 78]. The small sag approximation can be used

approximately to predict the symmetric modes as fol!ows:

k,! k,L 4 k~L
�,116!

M
with; k,=~

H,

w L 2EA
cos P,

H~ H.

H

cosP

= inc!ination angle between the cab!e chord
and the horizonta!

Again. cross-over of the modes is predicted, as shown in figure 3-8, where

has been replaced with >, and 3 wit-h X,", For inclined cables, however,2 - 2

the perturbation solution derived in previous sections should be used to ref!ect
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the basic assymmetry introduced in the problem. The perturbation solutions

predict hybrid mode formation and no cross-over phenomena, In figure 3-11

the eigen frequencies are plotted versus ! . The inclination angle is 30" and

w L/H, = 0.5. The eigenfrequencies are not crossing, Tbe curve of the first

mode is, at high values of ! e, the continuation of tbe curve of the second2

mode, at low values of X�and the second mode is, at high values of X;, the

continuation of the curve of the first mode, at low values of X-. Figure 3-8

can be seen as the limit case of figure 3-11, for inclination angle 0' and/or

w L/H, = 0, and can still be used to predict the eigenfrequencies accurately

for moderately small values of w L/H, and Q, except in the transition region.

The size of the transition region increases with increasing values of w L/H.o

and p . lt is interesting to note that for low values of X, no curves were

plotted. At such a low value of X+, tbe elastic strain in the cable becomes2

large, and cannot, exist in real cables. Cut-off was selected at the point where
the elastic wave speed is 10 times the transverse wave speed, This is

approximately the minimal value for steel cables and chains used in mooring

applic ations.

ln figure 3-lo the shape of the first two modes for various values of !;
have been plotted. The symmetric and anti-symmetric modes are changing8

over to hybrid modes in the transition region, and for high values of !; to the
anti-symmetric and symmetric mode of an inelastic chain. See

also [Triantafyllou 84],

The application of numerica! techniques to study the same phenomena

8The reference to symmetric and anti-symmetric modes is of course approximate. The
inclination of the cable destroys tbe fondamenta! symmetry of the problem,
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X; = 30

x2 = so Figure 3-12: Formation ol' Hybrid geode<
= 30, w L/H, = 0.5!

tNormal displacement: solid line!
�0 X tangential displacernent: dotted line!



-130-

confirms the existeuce of hybrid modes and the non-crossing of the modes  see

part II!, Yamagucbi [Yarnaguchi 70I used Galerkin's method to solve for the

eigeomodes. A cartesian description of the problem is used and the expansions

are made using sinusoidal functions in space. The hybrid modes and the nor<-

crossing of the modes are also obtained.

3.9 Numerical Solution of the Linearised Problem

Th< g<>verning equations �,1!, which were solved using asympto<i<

methods, can also be solved using numerical methods. The governing

equations written in the Fourier domain are  The solution metbod described

here is also valid for cables which are subject to current forces!:

dT1 d0,
Hl d p = � - T

t
ds ds

-M q= T � +T � + � 4'
ds ds ds

t �.11< !

dp dp

ds ds

dq dy
� + p '= ~1+e!>t
ds ds

The prob!em is reduced to a set of four ordinary differential equations

with two boundary conditions at each end.

Different methods can be used to solve the problem numerically. Using

the linearity of the equations, shooting techniques can be used to reduce it to



dTt

ds

n
0 T dP/ds - mc

dT,/ds

T.

dy, 1
 -M~"!

To

dPt

ds
ot

T,ds

dy,

ds

dp

ds EA

dq

ds

1+e

9'e rewrite this as:

dy
� = A s! y s!
ds

�,118!

with: y  s! =  Tt 4'> P q !

Using centered differences, the following difference scheme is obtained:
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an initial value problem, which can be solved by classical integrat ion

techn iqu es,

Another possible method is the use of implicit differences, to reduce th 

problem to a set of linear algebraic equations, Unfortunately, when a realistic

grid length is used, the number of equations becomes very large.

An explicit centered difference scheme was selected to solve this problem.

The centered difference scheme allows a transfer matrix formulation of the

problem. The boundary condit,ions can easily be handled in t hi

formulation IKeller 69I.

The lineartzed dynamic equations are rewritten in matrix form.



-132-

�.1! P!

v� = H B, yt �.1'�!

8'e write;

�.121!

]f motion» are irr!po ed at the upper end of the cab!e, the fo!!omit!g

r latiot! i» obtained:

boy

top <bot

2tptop

'Lop

Therefore:

T
topP,�p

�.1'? I

<top

Due to the fact that the static variables are s!ow!y changing with respect

to the spatial coordinate, the difference scheme wi!l give acceptable resu!t»,

except when the wave !ength becomes of the sa.me order as the grid length.

The overall error is O hs-!. To find the expression relating the two et!ds, we

can write:
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This provides a direct rela'tion between the itttposed motions at th~ top

and the unknown dynamic angle and tension at the top. The matrices
n-1

and a�t are obtained from the matrix multiplication H B, These mat rice.
i~1

can be calculated explicitly and they are functions of the static quantities, the

D t [ o't  "'lj = 0 �. 1 "3!

A search of the roots of �,123! is done by a root-finding method xvhich

locates the eigenfrequencies within a desired accuracy,

frequency and the grid length.

The difference scheme can also be used to calculate the dynamic variables

along the cable. 'A'hen the disp'lacernents and the dynamic tension and angle

at the top are known, the problem is an initial value problem which can

integrated directly.

The eigcnfrequencies for the cable can be found by imposing zero motion

boundary conditions at the top, and by searching for the frequencies which

give the governing equations a non-trivial solution. This can be v rit ten

according to �.12<! as;
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Chapter 4

NON-LINEAR STRINGS

4.1 Introduction

The st.udy of non-linear strings has attracted since the 1940's a great
deal of attention. The linear string equations are valid only for small motions.
while, when the motions become large, the dynamic tension generated by the
motion must be included in the governing equations. The populariti of the
subject is niain!i due to the fact that the governing equations can be solved
using perturbation analysis,

Carrier formulated the equations of motion for a non-linear string and
solved the problem by means of a perturbation expansion in terms of t hc
amplitude of motion. See [Carrier 4SI and [Carrier 49]. Oplinger [Oplinger 60l
studied the planar motion of a non-linear string using the method of
separation of variables. He studied the motions of a string subject to an
imposed motion of the boundary and he derived the response in the middle of
the string. The response curves he obtained bot h analyt ically and
experimentally, show a hardening spring type of effect

h figure 4-I the response of a non-linear string subject to a forced
motion of one of its ends is shown. The response of the midpoint is given a=
a, function of the ratio of the frequency to the first resonance frequency
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Taken from [Optinger 60I

Figure 4-1: Response Curve for a Non-Linear String
subject to Boundary Excitation



The parameter r governs completely the non-lin< arity of the systent.

given by:

E .4 lArnpl!-
7

T 2L0

The frequency response curve is bent to the right causing the resonance

frequencies to shift to higher frequencies as the amplitude increases. True
resonance is never obtained, Above a certain level, the response is rnultivalur d

and depends on hoss the exciting frequency e'as varied. Jurnp phenomena can
occur, i.e, a sudden reduction in the amplitude of the response for a sn>all
increase in the frequency of excitation. Point " on the curve is an uns1:rl!l~
point and cannot be achieved. %hen the excitation frequency is decreased an
inverse jump  i.e. a sudden increase in amplitude} occurs,

Oplinger conducted also experiments to verify his results. The agreenrent
of theory and experiments is remarkable, He also observed the spont aneous
occurance of out-of-plane motion for high amplitudes.

The inst abilities of the high- amplitude motion in a plane, and t he
resulting iihirling motion, has been the focus of a major research effort. l.or
a good review' on this subject, see [."iayfeh 79],

Major contributions to the out-of-plane v hirling motions can be found
in [Murthy 65], [Mrles 65], [4arasimha 68] and [Dickey SD]. 4arasimha ha
also made in his paper an interesting derrvation of the string equation,

expressed in Eulerian coordinates.

Prediction ol' the accurate location of t,he jump phenomena can onlv b~
done v hen damping is included in the model. Anand [Anand 66] included
viscous damping. A fluid drag type of damping vvas included by H u in hi.



4.2 Governing Equations

The string equation can be written in the transverse direction as;

8 q Oq Bq 8 Bq
M � �+ b, � ~ � ! = � I T x,t!�

Ot- Ot Bt Bx !.

q is the motion in the transverse direction, and x is the cartesian

coordinate along the string in rest. In the above equation use was made of

the fact. that:

Bx
1

Bs
�,3!

A quadratic damping of the Morison type was introduced, where b< can
be set in t he form:

1

bd p CD D2"
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study of pararnetrie instabi!indies of a hanging string [Hsu 751, Thi» paper

particularly interesting as far as this study is concerned, because he u»es

mode shapes directly in his solution method.

More recently, Richard and Anand studied the resonance phenomena

caused by narrow band excitation [Richard 83I, Tagata [Tagata 8:3] studies

the interesting subject of parametric excitation of a string of varying !ength.

In this work, we wil! only be concerned with the analysis of the in-plane

motion of non-linear strings under excitation of one boundary. The n>ain

objective ol' the study is to i!lustrate the use of modal expansions to solve a

non-linear prob!em. !t should therefore not be considered as an in deplh

analysis of the subject.
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lt, is convenient for further manipulation to write �,2! as:

8 r! b< BrJ Bq 1 8 Br!� �+ � � ! � I = � I T at!�
Bt- M Bt Bt ML 8o I. Btr

where: q: the non-dimensional displacement q/I

e: t,he non-ditnensional length s/L

This equation is subject to boundary conditions:

A stress-strain relation for moderately large transverse displacements can

be formula.ted as:

T = T,  r!+ EAe

The compatibility relation, derived in chapter 1, can be written as:

Even for moderately large motions, tbe tangential motion ts an order of

magnitude smaller than the transverse motion. Therefore:

Bg 1 Bt1
e= � +-

Ba 2!. Be

The strain can be assumed to be constant over the string length, Thi=

assumption is valid for excitation frequencies well below the first clast ic

eigenfrequency. Therefore:

I

e= e d r

1

= u l! - u�! + � g, a! do
2



The governing equation can, therefore, be written as:

E-A 8"g
+ �, e

ML Ba-
I4.10I

in which e is given by �.9!. This governing equation is subject to the

boundary conditions f4,6!, In equation �.10! the stattc tension is allov ed to

vary along the length, which makes it more general than the case of a string

under constar!t tension.

4.3 Expansions in. Orthogonal Functions

We propose to expand the solution of the problem in the following form:

[4.11!

where:  !g  crj; the quasi-static solution, to take care of the
inhomogeneous boundary conditions.

g  a!: the modes, obtained from the linear
eigenvalue problem with homogeneous
boundary conditions.

The boundary condition is directly taken care of by introducing the

quasi-static solution. The main advantage of using this technique is that for

low frequency excitation only a very limited number of modes needs ta be

inc! uded.
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4.4 The Quasi-Static Problem

The quasi-static problem consists of finding the solution to the follr»ving

equat.ion:

�.1'}

Vt0! = o gI1! = 1

The solution to this problem can be written as;

]

n. ~! =C, do
0 T. Ia!

where: C> �� do'

�.13!

For a string under constant tension the solution is simply:

q, e! =e

4,5 The Kigenproblem

The linear eigenproblem associated with �.10! can also be solved easily.

The case of a string «ith varying static tension is a classical Sturrn-Liouville

problem;

8 0r1
� � I T �!�
ML- Bo I Oe

q�! = 0q�! = 0

The eigenfunctions can be obtained using analytical, perturbation or

numerical methods, The GAB method, as a solution to this problem. has
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The eigenmodes are chosen to be orthonorrnal:

�.16 I

4.6 Tine [integration

The expansion  A.llj can be substituted in �.10I where all of the space

varying functions are known functions.

Substitution gives:

n tt b Bq ~ n
g,f+Q g,c,.+ � � ! q [+Q

M Bt
g,. C.,

EA+,e g�,f t!+P g,. C,. t!]
ML i=1

Multiplying with Mg. and integrating over the domain gives the

governing equation:
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been described in detail in chapter 3, The mades are orthogonal, with the

following orthogonality condition: {g, with i+0 are the eigenrnodes,!



I > atf
Mg g dtrf-b ~ � ~q rI do f0 j

p at

EA
�d. r, n g oa ia

D
�. 181

This sommation wil! be taken over a finite number n, so that a sct of n

non-linear differential equations with n unknown functions C is obt aine'.
j

Several of the terms in the expansion are time varying. These are the

COeffiCients invOlving ag/Bt and e, which are unknOwn.

Among the titne integration schemes, which can be used to integrate

�,18! are: the explicit scheme, and the implicit scheme together with some

iteration method. This will be discussed in great detail in chapt er

Fortunately �.18! has the characteristic that if the non-linearities are not

dominant, the n equations are very weakly coupled. Even ignoring completely

the coupling can lead to good practical results [Hsu 75j.

ln �.18I integration by parts was used to reduce the order of spat ial

derivatives b> one, This is a very important feature numericall~. and will be

used in the more general cable dynamic problem extensively,

4'Then a string with constant tension is simulated in time, the modes are

simply sinuoidal functions and some of the cross-coupling terms between the

equations disappear. An example of time simulation for a string with constant

tension is discussed in part ll,
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Chapter 5

NON-LINEAR DYNAMICS

USING GALERKIN'S METHOD

S.l Introduction

The advantages of using modal decomposition in linear dynaniic analysis

of structures are well documented [Clough 75] and [Bathe 8'j. The dyn:»»i<.

equat.ions of motion become uncoupled and, what is even niore important, in
many cases the number of degrees of freedom can be reduced drast ically.

without losing accuracy,

Modal expansions in the analysis of non-linear dyna.rnics is much less
developed. Some structural examples have been solved: buckling problems
[Nickell 7hj, contact problems and earthquake excitation [Bat.he 81I. The

results were very encouraging. Although the problems considered were highly
non-linear, a very small number of modes gave reasonable accuracy,

In riser dynamics Galerkin's method has been used by several researchers.

Kirk [Kirk 79] assumes the deflection as a series of sinu. oids.
Dareing [Dareing 79] solved the riser problem using a tnodal decomposition and
he found that under regular wave excitation few modes are needed, To

uncouple the equations he used a uniform equivalent damping over the riser.
The full, non-linear drag t,erm was used in the modal expansion of
Y. C. Kirn [Kim S3j, who investigated, also, the effect of second order
geometric terms. Fast convergence of the modal expansion is reported.
Applications of' modal expansions in non-linear strings have been described in
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5.Q Galerkin's hfethod

The Galerkin method will be explained using a simple one-dimensional

example. although the concept can be applied to problems in several

dimensions. For more details, see  Gotlieb 77!, The problem considered is a

mixed initial boundary value probtem

Bu

� = L x,t! u x,t! + f x,tj
Bt

u xj,t! = 0

u x,o! = g x!

u x~,t! = 0 ! 0

x!   x 4 x~

The operator L is a linear differential operator in x. Only t he

homogeneous problem is considered. because the inhomogeneous problem can be

chapter 4.

The use of modal analysis in linearised, small sag cable dynamics divas

developed by Irvine  Irvine 76!. He shows the influence of the rati»»f elastic

and geometric stiffness on the modaI dynamic tension. See also P'eletsos 8"].

Hagedorn [Hagedorn 80! includes non-1inearities up to third order in the modal

expansions of a small sag cable. The resulting equations were solved using a

perturbation solution, In a very interesting paper, written in Japanese and

therefore not well known in this continent, Yamaguehi [Yamaguchi 79  uses

Galerkin's method with sinusoidal functions to solve the general linear cable

problem. He uses this method to calculate eigenfrequencies and good agreement

with previous results is reported. The use of modal expansion for a cable

without. using the small sag approximation has, to the author's knowledge, not,

been reported.
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rewritten as a homogeneous one by adding an appropriate, but otherwis~

arbitrarv function, satisfying the inhornogeneous boundary conditions,

The solution is expanded in the form of a truncated series:

u  x,t! = p a  t! p. , x!
i=o

where 5 are assumed to be linearly independent space fun< t iona,
' I

satisfying the homogeneous boundary conditions.

The residual error, by substituting the truncated series in the governing

equation, is:

BU
R = � "-L -f

Ot

!!4,. p,. dx � ' = Q y, L p,. dx a., + f 0,   dx
Bt !=pi=o

j=l...n

Several types of functions can be used in the expansions. If the

eigenfunctions of the problem are used, the above equations become uncoupled,
resulting in a significant simplification of the time integration scheme.

Several methods can be used to minimize this error over the solution

domain. In Galerkin's method the error is weighted with the trial functions

and the averaged value is required to be 0. This gives:
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5.3 l,ines.rised Dynaznics using Modal Expansions

a" p aT, ay.
m, = � - T, 4, +F, t!�+e!

 9t 8s Bs

8 q BQ�BT,
M,, = T, + P, + T � + F,  t! � + e!

Dt" as Os 8s

Bp 0$
� -q =e
Bs Os

I

~<a� + p '=~,~1+e!
Os Bs

These equations are supplemented with the linear tension-strain relation:

Tl� - E A-et � -!!

To be able to use modal expansions, it, is more convenient to eliminate

the dynamic tension out of the relations �.13 and  S."!.

The modal expansions can be applied directly to the !inearised dvnamic

equations. The external forces can be of arbitrary form and they are a

function of time. Because the static forces are in equilibrium  sce chapter !

only dynamic forces must be considered. The governing dynamic equations are:
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obtained by neglecting the inertia and external forces in �.1! or  S.3! and

solving the resulting equations;

T,=E A

with boundary conditions:

We can separate the time and space dependence by writing the solutions,

making use of the linearity, in the following l'orm:

p�= f t! p�,  s! + g  ! p�>  !

, = r t! q.t  '! + g' '! q.  s

where p >, o ~ must satisfy:

p�,  L! =1

B4, BT,
TI+ 41+ T

0s Os

~p
e

Ds Bs

p�! = 0

q�! = 0

p,�! =0

q �! = 0

p L! = r«!

q L! = g t!
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and p, a �must satisfy:0�

pq  ~!

q~{L! =1

p,��! = 0

q , �! = 0

The quantities p,o above are the solution to the very slow motion of
s

a cable forced to move with unit amplitude in the tangential and normal

P s,t! = f t! Pq,t  s! + K t! Ps � s! + P C,  t! P,  s!
i=1

 :~.8!

q s,t! = f t! q,t  s! + K{t! q,� s! + P C,  t! q,  s!
i= 1

where p,  s!, q. Cs! are the components of the i th mode with fixed end
conditions.

5.3.2 Solution of the Eigenvalue Problexn

The eigen modes of the cable are obtained by solving t he l'ol low in g

eigenvalue problem.

direction, respectively. They are the zero frequency limit of the linear
dynamic problem. The solution can be obtained by using methods similar to
the ones described in chapter 3, because the equations are in the same form as
tbe equations providing the mode shapes, Ia this work, numerical central
differences were used to obtain quasi-static solutions.

Ne can now try expansions of the solutions in the following form:
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B Bp BPO- m~'p- � I E A  � - q '!
Bs Bs

Bq 8$
+ T �   � +p � j=0

1+e Bs Bs

By Bp Bp BT 1 Bq
-M~" q- EA  � -q ! I � +p

Bs Bs Bs Os 1+e l Bs Bs

B 1 Bq Bp
- T   � +p !

Bs 1+e Bs Bs

with the following boundary conditions.'

p L! = q L! = 0p�! = q�! = 0

f L  m pp + M q,-q ! ds = 0 �.10!

Jn the sequel, the modes are also assumed to be norma!ised so that:

f L  m p,. + M q." ! ds = 1
D

�.11!

5.3.3 Substitution in the Solution

The proposed solution  >.8!

Again, the methods described in chapter 3 can be used to solve thi-

problem, The results of the analysis are the eigenfrequencies and the
eigenmodes p, q., as well as the modal dynamic tension and the modal

dynamic angle, T, P, respectively.

The eigenrnodes are orthogonal to each other, in the following form:
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5.4 Time Integration

In this analysis iNewmark's method was selected. lt is an imp]icit time

integrat.ion scheme which is unconditionally stable, ln the case of a modal

descript-ion, no additional computational effort is needed compared with an

explicit scheme, so that it is unquestionably preferable to use an implicit

scheme. Newrnark's method was developed for direct time integration of very

large systems of linear equations, where it gives excellent results.  see IBathe

The Newrnark integration scheme evaluates the equilibrium equations at a

t.irne t + At as follows:

~ ~ ~ ~
'x = 'x + il - b! x + b + 'x At

 ~, l~!~ I ~ ~
x =x+ x At+ �/'2- a! x+ a +~x

where a and 6 are parameters which can be selected to give an optimal

combination of accuracy and stability. Writing the velocity and acceleration in

terms of displacement, we obtain, using the conventions in [Bathe 82!:

1

an't

ag
an't

an
an't

1
a = � - 1

3
9a
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p s,t! =  It! p � ~}+  ll<! p,.  t! + P p;  r! <:;  ~}

i=t

q s,t! = f t! qq >  r! +    t! qq n  s! + P q, . s! C,,  t.}
i~3

0q >,t! =   t! 4' !  sl + !  t! p,,  s! + Q 0,  s! C,  t!
i~1

 '>.19!

T, r,t! = f ~! T~� r! +  l t! T�,  r! + P T,.  s! C,  t!
i~1

where p., q.,  p., T. are the modal components of the tangential! '   ' 1

displacement, normal displacernent, dynamic angle and dynamic tension

respectively.

The Newmark integration scheme is u!nconditionally stable when b ! 0.5

and o > 0.25�+0,5!", which means that the solution does not, grow without

bound l'or any initial condition and for any 5t. Newmark introduced his

method originaHy with h = 0.5 and a = 0.25. This method is called the

constant average acceleration method  also trapezoidal rule!.  See figure 5-1!

It can be shown IBathe 82I that using this selection, an undamped

system shows no amplitude decay and only a phase shift due to time

integration errors appears, while no numerical damping is introduced by the

scheme. If numerical damping is desired, the value of 6 must be taken greater

than 0,5 and the value of e should be varied accordinglv. Due to its

favorable characteristics, the constant average acceleration scheme will be used,

The following relat.ious are obtained for �.16! using b = 0.5 and



Figure 5-1: Newrnark Constant Acceleration Scheme [13athe 8'I
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~ ~ ~ ~ ~
+~ x = �.255"t!  + x - x ! - �.25ht! x - x

� 203~ 92 ~ ~
'+~'x = 'x + 0,54t  'x + '+~'x !

5.5 Non-Linear External Forces

5.5.1 Description

A full description of all tbe external l'orces was given in chapter 1. In

the linear problem only the dynamic component, of these forces shou Id be

included.

Tbe only important force for most applications is the hydrodynamic

loading, ln this work, we use, apart from the added mass force, a. quadratic

drag force for the hydrodynamic loading, as described in chapter 1. Other

forms of loading can easily be implemented. The dynamic component of the

external force terms can be written as:

Fdt  I + ! 0+5 p CD   ! D  U c P t! !U c 0 t    1+e/ !

- 05 p C~ Re! D U cnsP ~ U cosP I  + /" !

� "I!

F<  I+e! = -0.5 p C>  Re! D  U sing + v !~U sing + v ~ l+e/2!

+ 0.5 p Cd, Re! D U - sin>   U sin> ~ I+e/ !

5.5.2 Time Integration in the Presence of a Non-Linear Force

Tbe equation of motion, using Newmark's method has been written as;
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~ ~

  ap C' + ag C' + a3 'C,. !

+ 2 . z.  at C, + a! 'C,- + a~ C, !

t+Dty k-1 't+Gtf g t+4c
I I  o. 5!

L

y k1 f  t+ZtF p + t+Ztp q !  ] + t+i g dt i da i
G

with: 3'' =  'Fd p + 'Fd q- ! � + 'e! ds
0

5.5.3 Discussion

Equation  S.25! describes completely the dynamics of a, two-dimensional

cable with a non-linear time varying force, The only restriction is the

assumption of small motions, which means that the dynamic tension must be

small compared to the static tension, The dynamic angle must also be small.

The complete solution procedure is described in table o-l. The major

advantage of the method is that a minimal number of modal components ran

be selected to represent the cable motions accurately.

It is the author's opinion that this procedure can also be used to solve

the inverse problem. Knowing the cable motions, study the hydrodynamic

forces in their modal components. This could enable us to make some

progress in the understanding of the hydrodynamic loading of flexible

str uct u res.
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Solution Method

l, Evaluation of the Static Equilibrium

3, Calculation of eigenfrequencies and modes

4. Time simulation

For each step;

Evaluation of the force

Evaluation of the modal forceIterative

Evaluation of the modal components

Evaluation of the displacemeetss.

Table 5-I; Time simulation using NIodal Fxpansion

Procedure

2. Calculation of quasi-static solution due to top motion
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5.6 Non-Linear Governing equations

p: tangential coordinate on static configuration

q; normal coordinate on static configuration

O>. angle between tangent on dynamic and static configuration

5.8.1 Dynamic Equations

The dynamic equilibrium, as outlined in chapter '2, can be used along the
p and q directions to find the equations:

Dp 8T Bp
rn = � - cosg - T � - sing +

ctt- Bs 1
Bs

F,�,,  i+e!
i~o

 G."6!
0-q

m
o!t-

o!T O'P

Bs
Sing + T � coS F!

Bs
t + E Fence i '+e!

i=o

These can be rewritten as;

8 p
m

8t-

8 8$
= �  Tcosg<j - T scabs>

 9s Bs
+ P F,�,,�+e!

i=0

Bq 8 8$ 8

cn �= �  TsinO>! + T coe i> + P F,�c, i+e!
Bs ~s i o

The externa] forces on the cable consist of the following components

- Gravity and buoyancy forces

The full non-linear equations of motion were derived in detail in

chapter 2. The two dimensional equations ot motion are writ ten in a

coordinate system fixed with respect to the equilibrium state, In our analysis

we selected the static equilibrium as the reference coordinate of the system.

 See figure 8-2!



Dynamic Confi
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- The added mass force

- The non-linear drag force

Gravity and buoyancy forces

The gravity and buoyancy forces act in the vertical direction when the

effective tension concept is used.  See chapter 2! The net, force acting on the

cable is given by

~'+'! = "o ' '">o

F I1+e! = - w cos4
  5.28!

where w is the net weight

The added xnass force

The added mass force as derived in chapter 2, can be written in the p

and q directions as:

8 p 8 q
F �+e! = - m I � sin"P - � - cosP singext,p

Op 84 Bq 84
+ � costi - sing> � + � - sin

at ' ' at at ' at
�.29!

8 p Bq
F �+e j = - m I - � ~ sin< cosP + � cos P@AC,q Bt2 ~ 1 gt2

ap, ~<, ~q 8
cos"p> � - � - sing> cosP>

Bt Bt Bt Bt

The added mass force, written in the reference coordinate system, is a

complicated non-lin ear function of velocities, accelerations and angular

orientation. This is mainly due to the appearance of Coriolis and centripetal



8"q
F, �+e! = - m,

For a large dynamic angle, we rewrite the normal added mass force terna

as follows;

F �+e! = -rn � - rn I- � -sin! cosy + {cos"g 1!
2err t,q 1 1 Bc-

{:>.31 !Vp QP Pq
- �.«s 4'<- � - � sing> cosp-

Bt 0t Bt Bt

The added mass can be considered to be the sum of a, linear term in the

q direction plus correction terms, The linear term can be included in the

inertia term,

The added mass term is smaH compared with the mass term for chain!

and wires, therefore the influence of the additional added mass terms on the

motion is believed to be minimal {see [Barr 74I!.

The Non-linear Drag Force

The drag force, as desrribed in chapter 1. can be written in the {p,q!

coordinate system as:

F �+e! = 0,5 p CD  Re! D {Lsinp + v, ! ~ Usinb +

�+e/2! - sing>

+ 0 g p C,  Re! D  L'cosy - v,! IUcosd - v,[

�+e/'2! - cosg>
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terms. For small dynamic angles this force will be reduced to a norm;>!

component.
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5,7 Nemton-Raphson Method

The equations of mot,ion of a cable are described by a set of non-linerr

partial differential equations of the hyperbolic type.

incremental linearised description of the non-linear equations rs used to solve

the problem iteratively.

The partial differential equations are linea rised in an increment al wav.

The result of the linearised problem is used to obtain an estirnat ion of t hr

solution of the non-linear problem, which is refined in srrccesive iteratirrns until

the error is below an acceptable bound, The linearisation of the partial

differential equations is obtained by using a Taylor expansion in several

vari a,bles.

The resulting linearised partial differential equations are solved by using

the modal superposition technique described in sections 5.3 - '>.5.

The method of incremental linearisation of the partial differential

equations is a suitable technique to solve a non-linear set of equat ion» irr
several variables, as explained in the sequel.

fn the Newton-Raphson method the non-linear set of equat ion» is
expanded in Taylor series [Dahlquist 74I. 1f we represent the set nf norr-linear
equations as f x!, Taylor's formula gives:

f x! = f x" ! + f x" ! x - x" } + 0    x - x I !

where f x! is a nxn matrix, the 3acobian with element
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We try to find a solution to the problem f x! = 0. If x< is close to the

solution of f x! = p, we obtain a better approximation as;

f  k!  R+t k!+f xk ! 0

which we can solve for x"+, because in the case of non-linear functions,

this is a set of n linear equations. In the case of non-linear partial differential

equations, we obtain a set of linear partial differential equations as will be

shown later.

The evaluation ol' the Jacobian of a n X n system can be quite

complicated and time consuming, Therefore it can be advantageous to use the

same Jacobian during several iterations. This method is known as the

modified Newton-Raphson method and can be written as:

f x~} x -x !+f x ! =0 k = p,p+rn

ln some cases it can he appropriate to evaluate the Jacobian only at the

first iteration step. This can be done when the solution is close to the initial

est.imat.ion and the non-linearit.ies are not too severe. This can be written as:

f x ! x" -x" !+f x" !=0

The selection of the most advantageous method depends strongly on the

nature of the problem. An illustration of the modified Newton-Raphson

scheme for a single function is shown in figure S-3.

There can be a problem with the convergence of the Newton-Raphson

scheme. This is especially true for concave curves, as for example in the cas<

of stiffening systems. Also, if tbe initial estimate is not close to the root. the

convergence can be very slow, as compared to the quadratic convergence of the
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Figure 5-3: Convergence of Newton-Raphson Method
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full Newton-Raphson method.

The modified Newton-Raphson method has been applied extensively to

partial differential equations using non-linear finit,e element methods. When no

updating of the Jacobian is perl'ormed, the method is known as the initial

stiffness method IBathe 80I and [Bathe 81I.

ln the case of time domain anaiysis, the initial stiffness method will

always convergence for sufficiently small time steps IBathe 82~, although in

some cases of severe non-linearities. time steps will be extremely small.

The initial stiffness method has been applied to cables with relative

success ILarsen 82!. The method is espacially attractive for use witt> modal

expansions, because no update of the modes is needed in the time simulation.

5.8 Incremental Formulation

We will use an incremental forinulation of the governing equations, using

a modified Newton-Raphson scheme. The Jacobian will be evaluat ed at a

reference state, which was selected to be the static configuration of the cable.

In this work no updating of the reference state will be performed. The

formulation takes fully into account the non-linearities of the problem by using

an iterative procedure to obtain the force baIance,

5.8.1 incremental Formulatioa of the Equations of Motion

The non-Iinear equations of motion can be written, including the added

mass in the normal inertia term, as:



�.34 !

0-q 0 8p
M = �   T sing ! + F  l+e! + T � cosoext q g 1

The only non-linear terms are the restoring force terms, which are:

ao
F, = �  T cosP !- T � sin<int c 1

 .5.3~ !

a BP
F = �   T sin@ !+ T- � - cos5

int a Bs

XVe will linearise those terms, using the estimation of terms from a

previous iteration plus a linearised part, while the Jacobian is evaluated in the
reference state. This gives:

BAT 84 8
F. = � - T Ad + �  T cos4" !Intt 8 oa 1 a 1

k < kT ' sing
Os

1

�.3M!
k+s any,

F = DT+ � AP +Tiat,n as ' 'a

Op
+ �   T sin4> ! + T � cosy>

Ds Os

Therefore the incremental formulation of the equations of motion

becomes:

B~p BAT BP, 8
 . 8t-"J Bs Ds Bs

+ Fext t l+e ! - T � sink k o k

0 p 8
m �= �   T costi

Bt- Os
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! + F  l+e! - T � sing
ext,p 1
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B q BP BT
M 1"" = '~T+ 'a< + T

Bt~J Bs Bs Bs

{ 5.37!

+ �  T si>4't! + F',���+e"! + T" cosp"
s Bs

5.8.2 Increxnentai Formulation of the Coxxxpatibility Relations

The non-linear compatibility relations are as given in 5.6.'2

Bp
�+e! cosp = �+e ! + I � � qPI o ~B os

 o.33!

�+e! sing = � + pP
B os

The incremental form of the compatibility relations is:

Bhp B k
De = � � hqP, + [ � - q"4 + �+e ! -  I+e"! cos4"

s l Bs

�.38!
BDq B k

  +,!DP> = � + Apg + � + p"P I -  l+e"! sing"
Bs os B os ~ l

The most frequently used force-displacernent relations can be written as:

7 = f{e!

This can be written incrernentally as:

Bf
~T = � he+ f e" ! - T"  G,39!

To keep things relatively simple, we wiH use, without destroying the

generality of the so]ution, a linear force-displacement relation.

5,8.3 Ines'cmental Formutatioxx of the Force-Disptacexxsent Relation
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  >.40!ZT= A E he

5.8.4 Incremental Formulat;ion of' the Governing Equations

We can substitute �.38! and �.40! in �,37! to obtain the incremental

formulation of the governing equations. We obtain:

B p
ln

Bt-

B Bdp 0$, 1 Ohq
EA  � -Aq4 ! + T �   � + Dpp,!

Bs Bs os 1+e Bs

Bo
= �  T cosP ! + F �+e ! - T sing>k k k k 'o . k

1 extt Bsos

k
k k k+ � EA [ � - q p�+ �+e ! - �+e ! cos5>]

Bs Bs

k

- T I [ � +pg,-�+e ! -sin > !
' Bs l 1+e Bs

�.41 !B "q 0$ M,p BT 1 OdqM �. - � ' IEA   � � >qe�!l - � I   + >p
Bt- Bs l. Bs J Bs ll+e Bs

1 Bdq
  + ~p4 !

1+e Bs

ay
sing>! + F �+e ! + T" cosP>

Bs

B
- T

0

B
 Tk

Bs

BP Bp k k+ � ' [EA [ � - q"0 + �+e ! �+e ! cosC,I0

I+ � [T [ � + p y,-�+e ! -sing! ]!
Bs L 1+e Bs

These are the complete incremental equations using the modified 4e~ton-

Raphson method. Note that in the left hand side are the linearised dynami<
equations. To obtain the linearisation around the reference state ice did not
make any assumption about the reference state, so this can be any dynamic
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equilibrium position.

6.9 Solution using the Modes

As iu the case of the linear dynamic problem, we look for a solution,

v , ! =   ! vq�   ! + sl ! P,g   ! p j   ! Pj   !
i~I

� 4'!!

where p >, a �and p ~, o �are the two quasi-static solutions for theq� ' g


reference state and p., q. are made shapes for the reference state. AsI ' I

discussed previously the reference state was chosen ta be the static equilibrium
configuration.

Because the quasi-static solution and the mode shapes satisl'y the
compatibility relations, the following relations are valid:

Bp 84,-e = � - q"
as Bs

Bq" Bg

8$ 88

�. 43!

where eh, 4> l,. are the strain and the dynamic tension obtained byk

linear superposition.

We can now obtain the modal equations of motion by multiplying
equations �.41! with the modal shapes, adding them up and integrating. The
following relations are used to simplify the equations;
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p gs p Bs

BA " Bq;
q,.� ds =- A � ds

p Os p Bs

ap, ay,
e = � - q;

Bs Os

After some manipulation, the following modal equations are obtained;

~ ~ I ~ ~ ~
C".+t + 2 a. C"+' + v- hC =- A f- B- g

I I 1 !

aT, ��aq,

0

t Fe«t�+e" ! + pi + Fextm~l+e" j + T~ q, ds
S S

L L
e,  T" cosP~ T !ds - P, T singt�+e ! ds

0 0

e. [EA[ e<",. + 1! - �+e" !cosg~>] ]ds
0

, I4, <-��+e, I - �+e" !singtI
0

�. 4'i l

Terms to take account of the bo tndarv «nd' ' "s

This equation is tbe full incremental representation of the non-linear, two-
dimensional cable problem using modal expansion. The right band side of
�.451 contains known quantities at the iteration step k+1

Explanation of terms:





t+Dtg a It+AtCk-1
1 0 »

 .!. 46!
0+ALC ~t+DtCk-1 + ~C Lqi ~ 'LC a t it 1 'i i 4 'i 5 i

When we substitute in �,45!, the equations can be solved directly for the

modal increments DC..L

S.ll Non-Linear Boundary Conditions

The t.ime integration scheme discussed in the preceding sect i»in is vali»l

[or the following boundary conditions,

- Prescribed motions at the top of the cable in function of time.
The motions plus the first and second time derivative are require»I.

- The bottom end of the cable is a fixed point.

In offshore applicat.ions, otber boundary condit tons. than the one <le»cribc }
above, might be applicable. 4'Ve will limit ourselve to the case»>f a < able
which can lay on the ocean floor. In most mooring line applicat i»»n t hii
situation occurs. The non-linear modal expansion technique can still be u»»~I,
when the bottom interact,ion forces are mo»Ieled as non-linear extert»el fore» i
oa the cable.

As reference state around which the modes are expar»ded. the st at ic
configuration with the cable partially oa the sea bottom is used. To be able
to use as few modes as possible, the static configuration sbould only in» iude
the part of' the cable which is moving from the bottom, and not th» part
which remains on the bottom even during large motions. Thi» requir» .. art
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estimation of maximum lift-off length before the time simulat ion. The

adequacy of the initial guess can be checked by looking at the dynamic angle

at t,he bottom point which should be very small during the whole time

simulation.

The expansions of the solutions, as derived previously can still be used:

where p,  s!, q,. Is! are the components of the i th mode with fixed end

conclitions, f' or the appropriate reference system selected.

The bottom interaction forces can be modeled appropriately as vertical

external forces. This includes a linear of non-linear spring plus a damping

force. The damping force is necessary to reduce the numerical instabilities of

a large spring force.

been t  :Dad.

F bo a ooa � k~y~ y - y fo y<0

 y dist. ance of cable segment to sea bottom!

The non-linear boundary forces are obta.ined by calculating the vert ical

displacements of the cable at each iteration st.ep. The vertical forces are

projected on the reference coordinate system and the modal cont r ibut ious c f

these non-linear boundary forces can be obtained.

is important to realize that the accuracy and efficiency of the modal



expansion scheme depends on the appropriate selection of the referent e
coordinate system used. The inclusion of long portions of cable which remains

on the bottom during the time simulation will require a substantial increase in

the number of modes considered to obtain accurate motion and tension

response.
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Chapter 6

LINEARIZATION

OF THE DRAG FORCES AND THE

NONLINEAR BOTTOM BOUNDARY CONDITION

6.1 Introduction

In this chapter we examine the pos ibility of using

linearization technique t» model the drag forces. 4'i'e will hmit

cables with a sinusoidal excitation at the top. V h»n

an «~uiva1< nt

t h<- an al vobis t < >

an»<luival<'ilt

linearizat ion technique is used, the motion equations can b» solv«l in t h<
frequency domain, reducing considerably the calculation time.

The cable experiences a significant, nonlinear drag force wh»n subj<ct< d t<>
a top excitation. The drag force is a function of the relative ve!«city l>»tv<en
the cable and the current, In this chapter we decompose this notilin»ar f<>r»i ~
into a mean force plus an equivalent linear damping force by niinitnizing ttlf..
quadratic error between the equivalent r»presentation and th» n<>nlin»ar <lrng
force averaged over one period. The mean force ran be included in the static
analysis. Equivalent linearized cable dynamic equations can be forinulatcd using
the governing equations in chapter I and the damping coefficients derived iii
this chapter. These equivalent linearized dynamic equations are easily s»lva'hl<.
in the frequency domain.

The equivalent linearization technique has been applied to tlie  AZTEC' col<]
water pipe dynamics IPaulling 79I and riser dynamics  Krolik<iwski 8 !I. 4f ~ f
also 'ITriantafyllou 82I.
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6.2 Nonl/near Drag Forces in Two-dimensions

The drag force, as described in chapter t, can bc written in the  p,q!

coOrdinate SySterrI as:

Fext �+e! = G,5 pw CD {RP! Do  I.'-sing + V ! I   slrId + ~s

  E+e/"! sing,

+ 0.5 p�CD,,  Re! D�{L'cos4 - v,! ~L'cosy - v,~

{ t+e/2! COsCI >

�.I !
F t  l+e! = - 0 Sp CD,, {Re! D  U sirIb + v ! ~Csin/ + v [

�+e/2! - cosP>

+ O.S p~ C~t  Re! D  L' cosp - vt! Il.lcosk v

�+e/2! sing >

where: 4 = IS + 4>

Bp Bq
v = � ' cosp + � ' slnpt

Bt ' Bt

Bp Bq
SInpt + � coSQj

Bt Bt

'Ke can rewrite theSe equations in nondimenSional forrrI using the relative
velocities between the cable and the current as;

F
F

0.~ p D UIL'~

= CD A ]A[ sing> + CD, B ]B] cos
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where:

1 c!q 1 ap
A =  sing, + � � ! cosyt + {cosO - � � ! sinO!

1.' Bt U <!t

1 Bp 1 Bq
B = {cosy - � � ! cosyt -  siny + � � ! sinO>

l' clt ' l! Ot

ln the above equations the assumption is made that th» inf1»en»» <if the itriin
on the drag forces is negligible. The following new variables ar< intr« l»«d
and substitut ed for the absolute signs.

{ t! -' !

The nonlinear nondimensionalized drag forces can now be written as,

F = Cp A- sgn{A! sino! + CD, B- sgn{B! cosyt
F = - t..> A- sgn{Al cosyt + C'D 8 sgn{P! .-instq Dn' 1 Dt

8.3 Assumptions

Several assumptions are made in order to approximate the n<inlin< sr dr;i~
force with an equivalent linearized force.

1, The linearized cable equations. except f«r th» drag f«r«. - «r<
valid. The motions are small and the dynamic tensi«n g< n»rat«l
is small compared io the static tension.

F

F
0.! p D

fAf
sgn A!�

A

/B!
sgn{H!=�

8
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2. The excttatton ts stnusotdal

3, The tangential drag forces are snta11 compared tc> the n<>rnial clrag

forces   CD, ~ O c! !.

3'nder the above conditions, the tv>'c> ditnensiooal .sinusoidal inotions can be

< rit ten as:

p p cr>s wt+c t!

q = q eve wt+c�}

est = 4 cos wt+t3!

wh~re: p, q and 4 are small quantities <>f nrd< r cs a

and rt, c�and c> represent the phase angl<a,3

�.a!

O.i Approximation of the Nanlhaear Drag Force for Small MoCtons

The expressions for th» nonlinear drag f<>r«s ran be sirttplified
signific<tnt fy if small rnot ic>ns and a s ma	 tangent ial drag c<>< ff! c ien t are
assum<d  'enerally we can distinguish three cai<s a. a foncti<>n <>f the ratio
<>f the cable vel<>city to the c<trrent velocttv.

~'p
and

U

wp
d a

 b.6j

-'p
and

The t >«> lirztit in g ca~e., which repre.. en t t he 1ar ge c ur rent and the sr<i@ H



curr<nt velocitv  compared tn the cable velocity! are studied herc

6.4.1 Large Current Velocity

For large current:

1
The drag forces can b» approximated to  ! t ! as.

F  t ! C.'D sino  sino o cos  t+<>!

+  'D, coso ~co.o�~

F  t! ~ -  '   . ino,  sino   - " � ' ! sino sin  t+~>'I

+ " [sino [ coso O coi ~t+ !}}

8.4.2 Small Current Velocity

For small current:

 .'

and
~'p

The drag forces can be approximated to 0 t!:
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~q
F {t! - C ~ � sin N+c ! ! � sin{< t+c,! P cos{vt+c>!P Da U ~ U

Pip P
+ C   � sin ~t+r ! ! � sin ~t+c !Dt

{e.s!

4fq
F {t! CD ! sin{~t+r,!   sin ~t+r,,!q Dn

U

6.5 Method af Least Squares

M'e propose to approximate the above equations by forces proportional to

the cable velocities as foHows;

l 8p
F, =FF, +C ��F' 'V a~

�.9!

Bq
F =F +C ��

I ~ 'Uat

ln order to minimize the integral of the square of the residual over the periock

interval tbe Vlethocl of Least squares is used, The residuals are defined as:

E =F -F
p p ep

�.10!
E =F -F

q

Tbe following conditions roust be satisfied:
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6.6.2 Small Current or No External Current

In this case we obtain:

Fp � � 0
OP �.1~3

8 ~q
C' =- Cq= »3 U

8 vp
C = - C

3r U

6.7 Linearhed Equivalent Damping Coefficients

From the above relations we can obtain the equivalent damping

coefficients written in dimensional form:

Bp
F =-b

P Pgt
�,163

coefficients can be obtained for each case as:

For large current:

 U sing   U sin<
b = O.S p CD D   ! p,sin ~<-<33

4/p

IU sing ~ U sin<
b = p C» D  IU sin>0  -   ! basin <2-c3!!

vq

�.173

For small current;

where b and b are the equivalent damping coel'ficients obtained from the
P

equations �,133, �.14! and �.15!. The final forms for the equivalent damping
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4

b =p C D � ~pp w 'Dt a

�.18!
4

b =p C D � eqq w Da a
3K

6.8 Numerical Solution of the Cable Dynamic Equations using the

Linearized Equivalent Damping Force

6.9 Linearisation of the Nonlinear Boundary Conditions

5.9.1 introduction

When a cable is laying part,islly on the bottom, dynamic motion causes

constant changes in length of the cable on the bottom  See figure 6-1I. The

The three-dimensional linear dynamics of a cable with a two-dimensional

static configuration have been studied in chapter 2 and the uncoupled in-plane

and out-of-plane governing equations have been obtained,

The equivalent linearization of the nonlinear hydrodynamic drag forces
can be used directly in the equations obtained in chapter 2. The centered

difference scheme formulated in chapter 3 has been modified to include the

equivalent dampingterms. The matrix form is the same as that in chapter 3
except for the linearized damping forces. The matrix formulation is now in
terms of complex quantities due to the damping forces and has been
implemented numerically. To find the correct estimation of the linearized
damping coefficient an iteration procedure starting from an assumed initial
amplitude is used. This numerical procedure has been irnplernen ted in a

computer code.
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Dynamic Static

Figure 6-1: Bottom-cable Interaction

Dynam~ c

P  b! + Static

Fige' 8-2: Motion Kinematics
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5.9.2 Kinematics

To be able to approximate the dynamics of the bottom part of the cable,
some a priori assumptions about the motion behavior have to be made. The
assumption is made that the shape of the cable between the new boundary
point and the bottom is parabolic, with the curvature equal to the static
curvature at the boundary point. The variation of curvature along the bottom
part of the cable is assumed to be small LSee figure 6-"!. lf we assume
subsonic motion of the bottom part of t,he cable the slope of the mooring line
will be zero at the bottom, therefore:

Bp
A

Os

Oq, q, b!
Bs bl

�. 19!

Since the curvature is constant we obtain:

� ~0!

%Within this linearized theory, we also make the assumptions:

touch-down point moves constantly along the length of the cabl~ .
hlathematically this can be expressed as a moving boundary condition lt is
not practical to use a moving boundary condition in a, tinearized theory. Vi'e
propose therefore to replace the moving boundary condition by a fixed
boundary condition on the cable at a point which is just outside the touch-
down zone. The boundary condition has to be specified in such a way that it
models correctly the bottom part of the cable.
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8.9.3 Dynamic Equilibrbaxa

The inertia forces in the tangential d irection are assumed to negii b ty

srna!!. In the norma! direction, we obtain

bl

bound.sea. inertia.q
0

To linear order this can be written as:

E 6.'~4!

Equilibrium in t,be normal direction gives:

T  b! 4> b! = k q b! + 1/3 M q« b!

Equilibrium in the tangential direction gives:

T, b!= k, p b}   tI,"6!

In this new equivalent boundary conditions, we can select the stiffness

parameters k, k to model correctly the bottom-cable interaction,
q.eq' p "q
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Chayter 7

TERMINAL IMPEDANCES

V.l Introduction

7.2 Terminal Impedances in Two-Dimensions

The upper end of the cable is excited by an external]y imposed harmonic
motion. The mooring line termination impedances are defined in the following

way:

S�� w! S��{~!

S� {~! S  ~!

The concept of termination impedances has been widely used in t hi

design of guyed masts  See for example  Davenport 65]!. In mooring line

design, the termination impedances can also be useful. In ttiis chapter wc

discuss some introductory concepts about terminal impedances. Thi» will a}10%

us to calcu 1 at e the eigen frequencies s nd the linear response for tnu1t i-1eg

systems. The concept, discussed here is only valid for linear systems. In tht
-case where equivalent drag damping is used, the superposition principle is not

valid anymore, so that the combined response can only be obtained by adding
the equivalent impedance coefficients with the correct motion for each leg of a
multi-leg system, Further research in the domain of equivalent hnpedance

coefficients for multi-leg systems is certainly required
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where: x: complex amplitude motion, horizontal direction

y: complex amplitude motion, vert, ical direction

F�: complex amplitude force, horizontal direction

F . complex amplitude force, vertical direction

The resonance frequencies are the poles of the impedance transfer

functions. The raooring line admittance matrix can be calculated as the

iaverse of the impedance matrix. fa practical applications, the above transfer

matrices can be used to fmd body motions and dynamic tensions.

At the top of the cable, sinusoidal motions in the x direction aod the y

directioa are imposed. The dynamic forces at the top are obtained as:

S��=[ T>> cosP - T sing P>>j/A

S��=[ Tll s>a~ + T - cosP ~t]j/

where: Tt<, 4>~ are the dynamic tension aod the dynamic angle,
respectively, caused by external motion ia the x
direction

S�[ T~~ cos4 - 7 s>nP P /A

S =[ T>< sin4 + T cos4NI P>>j/A

where: T>�, P>�are the dynamic tension and the dynamic s,agle,
respectively, caused by external motion in the y
direction

The dynamic tensioa at the top due to unit motion in the x and the y

directions is also a very important transfer function. It indicates how much
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dynamic tension is generated in the cable by a unit amplitude motion, and can
be used directly in fatigue analysis. The dynamic tension transfer functions

are defined as;

Syx Ttt/Ax

S~ � � Tq /A

The solutions of the above equations can be obtained by solv ing th e

1 inc ariz ed dy n am ic equ at ions in the frequency domain . Solutions vere obtained
by us in g the per turb at ion met hod described in chapte r 3 and also by using the
fini te difference scheme. An example of terminal impedances can be foun d in

part El. When equivalent linearizat ion is used, formulas �.2 } and �.8! remains
valid for a particular amplitude of motion, but the superposition principle can

not be used anymore.

7.3 Terminal Empedaaces in Three-Dixnensions

The con cep t o f termination imped anc es deriv ed for two-dimensional cable
dynamics can easily be extended to three dimensional cable dynamics. By
usin g the Euler ian angles and the trans formations of coord inates  as derived in
chapter 1 !, the tension force at the top of the cable can be decomposed as:

F�, + F�, =   T, + T, } cos y,+P,} cos 9,+8, !

F = F + F > =   T + T> ! - sin P +P>!

F F + F y   T + Ty ! + cos P +P~} ' sia 8 +9>}
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'F,3.1 Terminal Impedances in Absolute Coordinate System

For harmonic motions, the above matrix equations can be expanded for a

three-dimensional cable as {see figure 7-1!:

S =[ - T 8»cosg sin8 - 7 p sin< cos8 + os' o 8 ]/A

S��=[ T11sin< + T <11cos< ]/A�

Sax =[ To<»sin<0"" 0 o 1<' '>o"' o »c~<osin8o]/~

81ncos4 s~n8 To~1" ~n~ocos8O + T1c>cosd cos8 ]/A

S =[ Tt~slnp + T $1gcospJ/A

Sry = [ Tod'12s>n<osin8o To81" cocos Ho T12 rosin 80]/A

[ T 813cosp s!n8 T $13slnp cos& + T13cosp costI ]/A,

S [ T13sinp + T $13cosp,]/A

S�=[ T p sing sin8 - T 813cosp cos8 - 713cosp sin8] A,

~'here T1, 81 and p1 are the complex amplitudes of dynamic tension force1J' 1J 1J

and dynamic angles due to external motion in the j-direction. A, A and Ax' y

are tbe complex amplitudes of externally imposed barrnonic motions.
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Side ViewTop View

Top Yiew Ssde Ysew

X,X' ,X'

Fjgum'e 7-2: Impedance function in Local Coordinates for a Cable with
Two-dimensional Shape

Figure 7-1: jmpedance function in Global Coordinates for a Cable with
Three-dimensional Shape
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7.3.2 Terminal Ixnpedances in Local Coordinate Systeux for a Cable

with a Two-dimensional Static Shape

Tl~ �� 0

~la ='

The compact forms of the termination irnpedances are obtained as;

x'x' [ o ~11 ~o 11 C"Ão I~ x'

y'x' [ l1 ~o o ~1 1 ~oI~ x'

S., = 0
I X

S,, =[ T1�sin6 + T 0» cos4'o I/ y   10I

S., = 0

From the linear dynamic analysis of the cable with an in-plane static

shape the in-plane motions are known to be uncoupled from the out-of-plane

nlptions, In other words there is no driving mech an isrn in the on t-of-plane

direction due to in-plane motions,  See figure 7-2! This simplifies significantly

the terminal impedance functions. Following simplification can be made when

the local coordinate system is used  see 7-2!:
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Top View Side View

Figure T-3: Impedance Function for z Mu!ti-leg System
 Three-Dimensional Static Shape!

Side ViewTop View

Figure 7-4: Impedance Function for a Multi-leg System
 Two-Dimensiona! Stat.ic Shape!
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'/.5 Application to a Two-leg System with an In-plane Static

Configuration

The impedance functions for the in-plane motions are completely

uncoupled from the out-of-plane motions  assuming a linear systen>!. The total
impedance function can be obtained by simple addition of the two single line

impedance functions  see figure 7-5!:

Sxx +S Sxy - xy F�
[7. 13!

S' - S- S' + S-
yx yx yy

Especially, if the two legs are symmetric, the above relation is reduced to the

simple form;

goal G
�.14!

G 2 S F�

The general formulation for a multi-leg system is identical to �.11! when

the static shape of each cable is two-dimensional and no equivalent damping is

used, using the assumptions �.9!.
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Figure 7-5: Impedance function for a Two-leg System
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Chapter 8

IMPULSIVE MOTIONS OF

A HORIZONTAL, SHALLOW SAG CABLE,
SUBJECT TO A HORIZONTAL MOTION AT ONE END

S.l Governing Equations

m L- 8-p EA B~p EA 1 0q
� � = � � -a  � + � !�

H Bs H 1+e Bs
 8,1!

EA }}>q EA 1 DP L
� + o   � + � } � + � ps

H  }+e } e}ss H 1+e }}s H

For the cable considered in this analysis there are also the following boundary

and initial conditions:

 8..3!
p�,tj= 0

A cable is suspended between two supports at the same elevation, one

end is beld fixed and the other is forced to move with some prescribed

motion, ln what follows the motions of this cable are simulated using the

superposition of tbe eigenmode shapes as derived in chapter S. The

simulations of this section are different, however, tbau in the rest of the

report, because of the importance of the elastic cable modes, which allows the

simulation of travelling elastic waves.

Non-dirnensionalizing displacements with respect to the cable length yields

the equations of motion for a shallow sag horizontal cable as;
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and,

� tan ~/2!= tsnh   Q/2 !
02

where;

Q= o - ~ ! ~2 1/2
EA

~2 � ~2 L2  M/H!, non-dijnensionai frequency

Equation  S.ll! is the equation for the even symmetric frequencies of the cable

and equatian  8.12! is the expression for the odd antisyrnrnetric frequencies of

the cable. The corresponding mode shapes are found as,

sin ~ /2!
  = A I sin ~ s! - sinh  Q,s!I

sinh Q,/2!

 8,13!

o sm v /2!
q, = A [ � cos w,s! - cosh  Q,s!I

Q,siah Q /2!

for the even symmetric frequencies and,

cos v,/2!
A j cos v s! - cash  Q s!]

cosh Q /2!

 8.14!

a cos ~,/2!
= A   - � sin m s! + sinh  Q s!!

a Qncash Qa/2!

for the odd antisymrnetric frequencies, where the constant A is chosen

satisfy the orthonorrnality candition, as derived ia chapter 3.
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l

 mg   + Mg rim!ds = 1 n=rn
 8.15 }

= 0 otherwise

The next step in the analysis is to convert, the inhomogeneous boundary value

problem described by equations  8.1! through  8.7} to a homogeneous boundary

value problem. This is accomplished by finding a quasi-static solution which

satisfies the boundary conditions identically and then assuming a solution of

the form:

p s,t! = p, s!P t! + P C, t! fs s!
i~l

 8.16}
q{s,t! = q,{s!P{t! + P C, t! st, s!

i~1

The quasi-static solutions for the horizontal shallow sag cable may be found

p, s!= c2s/2+c3!sin as!+ - cls/2+c~ jcos os j

 8.1  j
q, sj=Ics+c2s/2+ cl/o [p-1/21}cos as! -  c<+c2/afp-1/2I-c>s/2}sin os!

where P= H/EA

and the constants cl, c2. c> and c< depend on the boundary conditions.

Having the quasi-static solution, the expressions in.  8,16} are plugged in

the original set of equations  8.1! through  8 7} yielding a new set of

differential equations describing the cable motion:





c  t! in state variable form,

ac'
c2

at

we obtain

ac'
=- ~2

at

M L2

H

1 82P
 q, s! 9g  s! + pq, s! 4! ds

0 Bt

{g +C7!

Ãitb the initial conditions:

c �!=0

 8"-3l
OP{0!

{o! = - �  q, s! rl  s! + pq, s! E!ds
0

in which form a numerical integration scheme may easily be applied.
Following the advice of Horabeck [Hornbeck 77I numerical integratiou is carried
out using a fourth order Ruage-Kutta method for the first four start-up steps
and the remainiag integration is carried out with a 4th order Adams Predictor-
Corrector method. Aa app1icatioa of the above procedure eau be found ia

part II,
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F<. If the drag term where a linear function of tbe displacement, the drag
term could be lumped into a linear modal damping coefficient, which would
account for tbe structural daraping as well as tbe linear drag. However, the
drag of tbe cable will, ia general be a non-Iiaear function of tbe normal
displacement which requires an iterative procedure to find the correct motion,
Neglectiag the drag term ia tbe first approach aad rewriting the expression for
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Appendix A

PROOF OF THE COMPATIBILITY RELATIONS 1N TERMS OF

VELOCITIES

Let v t,p! denote the velocity of a material point of the cable. Then

compatibility provides the following relatioa:

Dv Be
� = � t + {1 + e!{~X t!
Ds Bt

 A.1 !

KVe can prove this as follows; let r{p,t! denote the vector from the origin

of a Cartesian system to a material point. Then, according to the definition

of the tangential vector  see also IHildebrand 48]!:

Dr {t,p!
t t p! =

Dp
 A,2!

At time t + bt the segment has stretched by a certain amount,

Be

bp{s, t+bt! = bs 1 + e + � bt
Bt.

b p s,t!

1+e

8e
1+ e+ � bt

Bt

bt Be
bp s t! 1 + ��

1+e Bt
{A.3!

where relation  A,3! is exact in the limit as bt ~ 0. Yote also that it is

convenient to revert to the Langrangian coordinate s, which is time invariant.

At time t+bt therefore, the tangential vector is:
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Dr t+6t,s!
t  t+bt,s! =

Dp t+bt,s!
 A 4!

while;

Br
r t+bt,s! r t,s! + �  t,s! bt = r{t,s! + v t,s! - 6t

Bt
 A.S!

a relation which is, again, exact as bt ~ 0. So finally

1 D
t {t+bt, s! �r+v-bt,

P
5t Be  A.6!

t+e 0t
or:

Dt Dv Be t
p t  t+bt s! - t  t s!

Dt Dp Bt 1+e
 A.7!

1.8! we obtain that:but from  

Dt

Dt
<Xt  A.S!

therefore;

Dv t Be
� + vXt

Dp 1+e Bt
{A.9!

When this is rewritten in the unstretched Lagrangian coordinate,  A.l! is

obtained.
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EQUATION

Tbe string equation with varying coeficients can be written as:

d dq
T{d! � + e2 L2 M{+! q = 0

ds da

{B.1 !

with: M e! and T{er! slowly varying.

~2 M L2
and/or: large.

T

{e is t,he non-dimensional length!

The VM3 approximation is of the foHowiag form

1 + ~~L g + g2/~ !2
 g o!

where: g = {M/T! / de
0

4 ~
1 T 1 T

0 l 8 TM!i 32 M!i Ti
M-T

16 M'/'-{T!'/'

gq2 {T	/2 1 ~ {T	/2
+ 13/! MS/2 8 M3/2

Appendix 8

HIGHER ORDER WKB AFPRGXMATION OF THE STRING
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The self-adjoint differential equation was obtained in subsection 3.6,4 as:

cosp   + 2cosg +   -  = 0
cos P cos P

 C. 1]

Assume  .,   eigenmodes with eigenvalues X., X. LVe can write for1

mode i:

 <'-2!

Multiplication with   and integration over the domain gives;
!

cosP  . + 2cosg  . dP
~~0t

-  . '+ ' dp,  C,3}

Using partial integration, this can be written as:

<toPt os/  .  , - 2cosg    , dP
<~ot

IC,4}

The same operation can be performed by multiplying  - vith the equation

Appendix C

ORTHOGONALITY OF THE MODES OF INEXTENSIBLE CABLES
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Substracting  C.4! from  C.S! gives:

E,'-= e;

we obtain:

for igj

for the mode g. and integrating:
]

Lop I E;  ] 43 E;I � ',' + I
i co P cosP

which was to be proved.

Using the relation that:

d6
= a cos~P

de

dP = 0 for iPj
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Using influence functions, the reqnizernent for the modes of an extensible

cable can be written as IRosenthal 8lj:

L

[e  s!j = p s,r!] ~  m rjI !a.  r!j dr
0

{D. >!

where in the two dimensional case, with the components written in the

tangential and normal direction, we have;

[o; { !] = Ip;  s! q; {s!j {D nI

Hyy  s r! Hyg  s r!

H2!  s,rI H~~ {s,r!
[H{s,rJI =

 D.3!

m r! 0
 m r!j =

 D.4I0 M r!

tberefore: Im r!/7 = [m r!]

[H s,r!]~ = IH r,s!I {D.5}

Multiplying  D,l! with the transpose of a the modal matrix of a different
mode and the mass matrix, and integrating, we obtain:

Appendix 9

ORTHOGONALITY OF THE MODKS OF EXTENSILE ENABLES
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L

I  s!] [m !] [a; !] d

L L
[a. s!] [m s!] ds [H s r!] [m r!] [a- r!] dr

0 0

Due to  D.5! this is equivalent to:

L

[a  s!] [m s!] [a; s!] ds

L L

[a,. r!]T [m r!] dr [H r,s!] Im s!] [a s!] ds
0 0

f L[a- s!] [m s!] [a, s!] ds = 0
o

or, explicity in non-dimensional form.

1

 m f-, f- + M g,. q. ! d r = 0
0

i'

We can apply  D.6! also to the jth mode. Subtracting the result from

 D.7! when m is different from v., then:1 	
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